Project description:As much as 400 Tg of carbon from airborne semivolatile aromatic hydrocarbons is deposited to the oceans every year, the largest identified source of anthropogenic organic carbon to the ocean. Microbial degradation is a key sink of these pollutants in surface waters, but has received little attention in polar environments. We have challenged Antarctic microbial communities from the sea-surface microlayer (SML) and the subsurface layer (SSL) with polycyclic aromatic hydrocarbons (PAHs) at environmentally relevant concentrations. PAH degradation rates and the microbial responses at both taxonomical and functional levels were assessed. Evidence for faster removal rates was observed in the SML, with rates 2.6-fold higher than in the SSL. In the SML, the highest removal rates were observed for the more hydrophobic and particle-bound PAHs. After 24 h of PAHs exposure, particle-associated bacteria in the SML showed the highest number of significant changes in their composition. These included significant enrichments of several hydrocarbonoclastic bacteria, especially the fast-growing genera Pseudoalteromonas, which increased their relative abundances by eightfold. Simultaneous metatranscriptomic analysis showed that the free-living fraction of SML was the most active fraction, especially for members of the order Alteromonadales, which includes Pseudoalteromonas. Their key role in PAHs biodegradation in polar environments should be elucidated in further studies. This study highlights the relevant role of bacterial populations inhabiting the sea-surface microlayer, especially the particle-associated habitat, as relevant bioreactors for the removal of aromatic hydrocarbons in the oceans. Graphical Abstract Particle-associated bacteria inhabiting the sea-surface microlayer showed a faster capacity to degrade PAH than subsurface bacteria.
Project description:Coastal Antarctic marine ecosystems play an important role in carbon cycling due to their highly productive seasonal phytoplankton blooms. Southern Ocean microbes are primarily limited by light and iron (Fe) and can be co-limited by cobalamin (vitamin B12 ). Micronutrient limitation is a key driver of ecosystem dynamics and influences the composition of blooms, which are often dominated by either diatoms or the haptophyte Phaeocystis antarctica, each with varied impacts on carbon cycling. However, the vitamin requirements and ecophysiology of the keystone species P. antarctica remains poorly characterized. Using cultures, physiological analysis, and comparative ’omics we examined the response of P. antarctica to a matrix of Fe-B12 conditions. We show that P. antarctica is not auxotrophic for B12 , as previously suggested, and report new mechanistic insights of its B12 response in cultures of predominantly solitary and colonial cells. Proteomics coupled with proteogenomics detected a B12 -independent methionine synthase fusion protein (MetE-fusion) that is expressed under vitamin limitation and is interreplaced with the B12 -dependent isoform (MetH) in replete conditions. Database searches returned homologs of the MetE-fusion protein in multiple Phaeocystis species and in a wide range of marine microbes, including other photosynthetic eukaryotes with polymorphic life cycles and also bacterioplankton. Furthermore, MetE-fusion homologs were found to be expressed in metaproteomic and metatranscriptomic field samples in polar and more geographically widespread regions. As climate change impacts micronutrient availability in the coastal Southern Ocean, our finding that P. antarctica has a flexible B12 metabolism has implications for its relative fitness compared to B12 -auxotrophic diatoms.
Project description:Investigation of whole genome gene expression level in Pseudozyma antarctica T-34, compared to Ustilago maydis UM521. To clarify the transcriptomic characteristics of Pseudozyma antarctica under the conditions of high MEL production, a DNA microarray of both the strains, Pseudozyma antarctica T-34 and Ustilago maydis UM521 was prepared and analyzed the transcriptomes.
Project description:The study aims at deciphering the response of Phaeocystis antarctica under iron limitation and iron supplementation at a transcriptomic level.
Project description:Investigation of whole genome gene expression level in Pseudozyma antarctica T-34, compared to Ustilago maydis UM521. To clarify the transcriptomic characteristics of Pseudozyma antarctica under the conditions of high MEL production, a DNA microarray of both the strains, Pseudozyma antarctica T-34 and Ustilago maydis UM521 was prepared and analyzed the transcriptomes. A DNA chip study using mRNA from the cultures of Pseudozyma antarctica T-34 and Ustilago maydis UM521 demonstrated the gene expression level of each strain.