Project description:Archaeological and archaeogenetic evidence points to the Pontic-Caspian steppe zone between the Caucasus and the Black Sea as the crucible from which the earliest steppe pastoralist societies arose and spread, ultimately influencing populations from Europe to Inner Asia. However, little is known about their economic foundations and the factors that may have contributed to their extensive mobility. Here we investigate the dental calculus proteomes of 45 individuals spanning the Neolithic to Greco-Roman periods in the Pontic-Caspian Steppe and neighboring South Caucasus, Oka-Volga-Don, and East Urals regions.
Project description:Nasopharyngeal carcinoma (NPC) is a common cancer in southern China and South East Asia where more than 50,000 new cases are diagnosed each year. We used microarrays to identify down or upregulated genes in NPC compared with non-malignant controls. Experiment Overall Design: Snap frozen nasopharyngeal biopsies from 25 patients with histologically confirmed undifferentiated NPC were included in the microarray analysis. Controls were obtained from 3 patients with no evidence of malignancy.
Project description:The p21 RAS subfamily of small GTPases, including KRAS, HRAS, and NRAS, regulates cell proliferation, cytoskeletal organization and other signaling networks, and is the most frequent target of activating mutations in cancer. Activating germline mutations of KRAS and HRAS cause severe developmental abnormalities leading to Noonan, cardio-facial-cutaneous and Costello syndrome, but activating germline mutations of NRAS have not been reported. Autoimmune lymphoproliferative syndrome (ALPS) is the most common genetic disease of lymphocyte apoptosis and causes autoimmunity as well as excessive lymphocyte accumulation, particularly of CD4-, CD8- ab T cells. Mutations in ALPS typically affect CD95 (Fas/APO-1)-mediated apoptosis, one of the extrinsic death pathways involving tumor necrosis factor receptor (TNFR) superfamily proteins, but certain ALPS individuals have no such mutations. We show here that the salient features of ALPS as well as a predisposition to hematological malignancies can be caused by a heterozygous germline Gly13Asp activating mutation of the NRAS oncogene that does not impair CD95-mediated apoptosis. The increase in active, GTP-bound NRAS augments RAF/MEK/ERK signaling which markedly decreases the pro-apoptotic protein BIM and attenuates intrinsic, nonreceptor-mediated mitochondrial apoptosis. Thus, germline activating mutations in NRAS differ from other p21 Ras oncoproteins by causing selective immune abnormalities without general developmental defects. Our observations on the effects of NRAS activation indicate that RAS-inactivating drugs, such as farnesyl-transferase inhibitors (FTIs) should be examined in human autoimmune and lymphocyte homeostasis disorders. Experiment Overall Design: Describes the discovery of a new gene underlying a novel type of autoimmune lymphoproliferative syndrome, and characterizes the mechanisms involved in the pathogenesis of the disease.
Project description:Biofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of polysaccharides, proteins, and extracelluar (e)DNA, with eDNA being required for the formation and integrity of biofilms. Here we demonstrate that the spatial and temporal release of eDNA is regulated by BfmR, a regulator essential for Pseudomonas aeruginosa biofilm development. The expression of bfmR coincided with localized cell death and DNA release, with high eDNA concentrations localized to the outer part of microcolonies in the form of a ring and as a cap on small clusters. Additionally, eDNA release and cell lysis increased significantly following bfmR inactivation. Genome-wide transcriptional profiling indicated that bfmR was required for repression of genes associated with bacteriophage assembly and bacteriophage-mediated lysis. In order to determine which of these genes were directly regulated by BfmR, we utilized chromatin immunoprecipitation (ChIP) analysis to identify the promoter of PA0691, termed here phdA, encoding a previously undescribed homologue of the prevent-host-death (Phd) family of proteins. Lack of phdA expression coincided with impaired biofilm development, increased cell death and bacteriophage release, a phenotype comparable to ΔbfmR. Expression of phdA in ΔbfmR biofilms restored eDNA release, cell lysis, release of bacteriophages, and biofilm formation to wild type levels. Moreover, overexpression of phdA rendered P. aeruginosa resistant to lysis mediated by superinfective bacteriophage Pf4 which was only detected in biofilms. The expression of bfmR was stimulated by conditions resulting in membrane perturbation and cell lysis. Thus, we propose that BfmR regulates biofilm development by controlling bacteriophage-mediated lysis and thus, cell death and eDNA release, via PhdA.
Project description:The global diversity of Mycobacterium tuberculosis comprises at least seven lineages, each with its distinct geographic distribution. The aim of this experiment was to perform a comparative analysis of two of these lineages: Lineage 1 and Lineage 2. The former is found around the rim of the Indian ocean and in south-east Asia, while the latter is widely spread throughout Asia and shows an increasing global spread. We have chosen three fully drug susceptible clincal isolates to represent each of the two lineages. We performed RNAseq analysis on rRNA depleted samples isolated from cultures during mid-log phase. Each strain was measured in triplicate.