Project description:Transcriptional programs are important for the development of complex eukaryotic organisms. Suites of genes expressed with temporal and spatial controls by regulatory networks in response to environmental cues are the cornerstone for achieving the specification of morphology and physiology of the tissue or organ systems. Thus, an important issue of developmental biology is to define the subsets of expressed genes and their expression patterns that are related to the organ or tissue system. Rice is a model plant for cereal genome research. Although large amounts of data of whole genome expression have been generated in recent years in rice, the majority of the studies were designed to identify differentially expressed genes between controls and treatments with certain experimental conditions such as biotic, abiotic or light, or to investigate the comparative expression patterns between wild type and mutants of certain genes. Only in a few cases were the datasets designed for studying the transcriptomes of a limited number of organs and cell types. Thus, there is still insufficiency in the available datasets that would allow for the establishment of expression patterns for suits of genes during the developmental processes of rice. In this study, we collected 39 tissues/organs covering the life cycle of the rice from two indica varieties Minghui 63 and Zhenshan 97, and the Affymetrix GeneChip Rice Genome Array was used to investigate the transcriptomes of these organs. The objective was to develop a genomic resource of genome-wide dynamic transcriptome of the rice plant, which could be used as the reference gene expression map for rice and other cereals. Also, the dataset is used to identify the candidates of genes with potential functions in regulating the development of rice or breeding practice. Keywords: rice, expression profiling, life cycle, development, inflorescence To dissect the developmental transcriptomes of rice, a total of 39 tissues covering the entire tissue culture process and life cycle were sampled from two indica varieties Minghui 63 and Zhenshan 97. And the Affymetrix Genechip rice Genome Array was used to investigate their dynamic transcriptomes. Two independent biological replicates were sampled from most tissues, except two seedling and three panicle tissues, for which three independent biological replicates each with two technical replicates were sampled, resulting in a dataset of 190 microarrays.
Project description:Animal pigment patterns play important roles in behavior and, in many species, red coloration serves as an honest signal of individual quality in mate choice. Among Danio fishes, some species develop erythrophores, pigment cells that contain red ketocarotenoids, whereas other species, like zebrafish (D. rerio) only have yellow xanthophores. Here, we use pearl danio (D. albolineatus) to assess the developmental origin of erythrophores and their mechanisms of differentiation. We show that erythrophores in the fin of D. albolineatus share a common progenitor with xanthophores and maintain plasticity in cell fate even after differentiation. We further identify the predominant ketocarotenoids that confer red coloration to erythrophores and use reverse genetics to pinpoint genes required for the differentiation and maintenance of these cells. Our analyses are a first step towards defining the mechanisms underlying the development of erythrophore-mediated red coloration in Danio and reveal striking parallels with the mechanism of red coloration in birds.
Project description:Comparison of temporal small RNA gene expression profiles from Danio rerio skin. The smallRNA-seq data comprise 5 age groups at 6, 12, 24, 36 and 42 months. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Comparison of temporal small RNA gene expression profiles from Danio rerio brain. The smallRNA-seq data comprise 5 age groups at 6, 12, 24, 36 and 42 months. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:This project aimed at identifying developmental stage specific transcript profiles for catecholaminergic neurons in embryos and early larvae of zebrafish (Danio rerio). Catecholaminergic neurons were labeled using transgenic zebrafish strains to drive expression of GFP. At stages 24, 36, 72 and 96 hrs post fertilization, embryos were dissociated and GFP expressing cells sorted by FACS. Isolated RNAs were processed using either polyA selection and libray generation or NanoCAGE. This is the first effort to determine stage specific mRNA profiles of catecholaminergic neurons in zebrafish.
Project description:Classical embryological studies revealed that during mid-embryogenesis vertebrates show similar morphologies. This âphylotypic stageâ has recently received support from transcriptome analyses, which have also detected similar stages in nematodes and arthropods. A conserved stage in these three phyla has led us to ask if all animals pass through a universal definitive stage as a consequence of ancestral constraints on animal development. Previous work has suggested that HOX genes may comprise such a âzootypicâ stage, however this hypothetical stage has hitherto resisted systematic analysis. We have examined the embryonic development of ten different animals each of a fundamentally different phylum, including a segmented worm, a flatworm, a roundworm, a water bear, a fruitfly, a sea urchin, a zebrafish, a sea anemone, a sponge, and a comb jelly. For each species, we collected the embryonic transcriptomes at ~100 different developmental stages and analyzed their gene expression profiles. We found dynamic gene expression across all of the species that is structured in a stage like manner. Strikingly, we found that animal embryology contains two dominant modules of zygotic expression in terms of their protein domain composition: one involving proliferation, and a second involving differentiation. The switch between these two modules involves induction of the zootype; which in addition to homeobox containing genes, also involves Wnt and Notch signaling as well as forkhead domain transcription factors. Our results provide a systematic characterization of animal universality and identify the points of embryological constraints and flexibility. 106 single embryo samples