Project description:In this study, we scrutinized by comparative proteomics using Tandem Mass Tags (TMT) couple to synchronous-precursor selection (SPS)-MS3 the dynamic of the proteome of specific tissues of avocado seeds (testa, cotyledon, and embryo) during postharvest shelf life. Our proteomics pipeline allows the identification of more proteins in testa compared to other tissues, and also, we could track the dynamic of more protein in this tissue during PSL. In general, proteins associated with stress, glycolic process, and starch metabolism were commonly identify in each tissue. In contracts, a drastic difference in protein translation, amino acid, and fatty acid metabolism was observed among tissues during PSL.
Project description:White root rot disease caused by Rosellinia necatrix is one of the most important pathogens affecting avocado productivity in temperate, tropical and subtropical climates. Control of this disease is complex and nowadays, lies in the use of physical and chemical methods, although none have proven to be fully effective. Detailed understanding of the molecular mechanisms underlying white root rot disease has the potential of aiding future developments in disease resistance and management. In this regard, this study used RNAseq technology to compare the transcriptomic profiles of R. necatrix during infection of susceptible avocado `Dusa´ roots with that obtained from the fungus cultured in rich medium. The transcriptomes from three biological replicates of R. necatrix colonizing avocado roots (RC) and R. necatrix growing on potato dextrose agar media (PDA) were obtained using Illumina sequencing. A total of 12,104 transcripts were obtained, among which 1937 were differentially expressed genes (DEG), 137 exclusively expressed in RC and 160 and PDA. Interestingly genes involved in the production of fungal toxins, detoxification of toxic compounds, hormone biosynthesis, gene silencing and plant cell wall degradation were overexpressed during the infection process. In addition, 23 out of the 137 contigs, only expressed during R. necatrix growth on avocado roots, were predicted as candidate effector proteins (CEP) by the CSIRO tool with a probability above 60%. The PHI (Pathogen Host Interaction) database revealed that 11 R. necatrix CEP were previously annotated as effectors genes proven experimentally via pathogen-host interaction.
Project description:The aim of this study was to evaluate the physiological response and the expression analysis of `Dusa´ avocado rootstocks subjected to two different levels of water stress, and their subsequent recovery. At the beginning of the experiment, avocado plants were divided in Control plants (watered to field capacity (Fc) throughout the experiment) and stressed plants that were subjected to controlled substrate drying-up until they reached 50% of Fc (mild-WS) and 25% of Fc (severe-WS), respectively. Afterwards, plants were fully irrigated to assess drought recovery response. A set of physiological measurement were taken at leaf and whole-plant levels to assess avocado response to each level of water stress and rewatering. Root samples were collected in mild-WS and severe-WS and gene expression analysis was carried out using a targeted cDNA avocado stress microarray containing transcripts from de novo sequencing of 'Dusa' in response to biotic and abiotic stress. Avocado gene expression profiles under different levels of water stress are discussed in order to shed light on the molecular mechanisms associated with water deprivation in Dusa avocado rootstocks.
Project description:Embryogenic cultures derived from a zygotic embryo of the avocado cv. Anaheim, were selected for resistance to the culture filtrate (CF) of Rosellinia necatrix, the causal agent of avocado white root rot. Cultures were obtained through recurrent selections in progressively increasing concentrations of fungal CF (from 20% up to 80%).
Project description:We report on the kiwifruit postharvest phase through an approach consisting of 2D-DIGE/nanoLC-ESI-LIT-MS/MS-based proteomic measurements. Kiwifruit samples stored under conventional, cold-based postharvest conditions were sampled at four stages (from fruit harvest to pre-commercialization) and analyzed in comparison protein content. Proteomics showed that proteins associated with disease/defense, energy, protein destination/storage, cell structure and metabolism functions were affected at precise fruit postharvest times. By lining up kiwifruit postharvest processing to a proteomic depiction, this study integrates previous observations on protein content in postharvest pomes treated with specific chemical additives, and provides a reference framework for further studies on the optimization of fruit storage before its commercialization.
Project description:To understand the molecular foundation of the SE induction and development in avocado, we compared by proteomics approach, the embryogenic (EC) and non-embryogenic (NEC) cultures of two avocado varieties. Although Criollo and Hass EC exhibits particularities in the proteome and metabolome profile, in general, we observed a more active phenylpropanoid pathway in EC than NEC. Our proteomic pipeline consisted of a peptide labeled with TMT6plex and synchronous precursor selection (SPS) MS3
Project description:Background: Rosellinia necatrix is the causal agent of avocado white root rot (WRR). Control of this soil-borne disease is difficult and tolerant rootstocks may represent an effective method to lessen its impact. To date, no studies on molecular mechanisms regulating the avocado plant response towards this pathogen have been undertaken. To shed light onto the mechanisms underpinning disease susceptibility and tolerance, molecular analysis of the gene's response of two contrasting-disease-reaction avocado rootstocks was assessed. Results: Gene expression profiles against R. necatrix were assessed in the susceptible 'Dusa' and the tolerant selection BG83 avocado genotypes by micro-array analysis. In 'Dusa', the early response is mainly related to redox processes and cell-wall degradation activities, all becoming more remarkable after disease progression affected photosynthetic capacity; whereas, tolerance to R. necatrix in BG83 relies on the induction of protease inhibitors and their negative regulators, as well as salt and osmotic stress related genes besides oxido-reduction processes. We identified three protease inhibitors, glu protease, trypsin and endopeptidase inhibitors, highly overexpressed in the tolerant genotype, when compared to susceptible 'Dusa', after infection with R. necatrix, reaching fold change values of 44, 34 and 16 respectively. Conclusions: The contrasting results between 'Dusa' and BG83 give new insights into the different mechanisms involved in the avocado tolerance to P. cinnamomi and R. necatrix, which are consistent with their biotrophic and necrotrophic lifestyles, respectively. The differential induction of genes involved in salt and osmotic stress in BG83 could indicate that R. necatrix penetration into the roots is associated with osmotic effects suggesting that BG83's tolerance to R. necatrix is related to the ability to withstand osmotic imbalance. In addition, the high expression of protease inhibitors in tolerant BG83 compared to susceptible 'Dusa' after infection with the pathogen, suggests the important role that these proteins could play in the defence of avocado rootstocks against R. necatrix.
Project description:Both exogenously supplied and transgenic induced cytokinin production can effectively delay senescence of broccoli florets during postharvest storage. However, a substantial comparison between the mechanisms of these two treatments on delaying broccoli florets senescence was absent. Here, we conduct microarray analysis on broccoli florets of N6-benzylaminopurine treated and ipt-transgenic broccoli that harbor a senescence-associated-gene promoter triggering isopentenyltransferase gene expression during postharvest storage. Analysis used RNA of Green King inbred line 104 as control sample for comparison to the experimental samples of ipt-transgenic line 102, 103 and parental line Green King as well as 10 ppm BA treated Green King at harvest and after postharvest storage at 25 centigrade in the dark for 4 days.