Project description:The SARS-CoV-2 virus is continuously evolving, with appearance of new variants characterized by multiple genomic mutations, some of which can affect functional properties, including infectivity, interactions with host immunity, and disease severity. The rapid spread of new SARS-CoV-2 variants has highlighted the urgency to trace the virus evolution, to help limit its diffusion, and to assess effectiveness of containment strategies. We propose here a PCR-based rapid, sensitive and low-cost allelic discrimination assay panel for the identification of SARS-CoV-2 genotypes, useful for detection in different sample types, such as nasopharyngeal swabs and wastewater. The tests carried out demonstrate that this in-house assay, whose results were confirmed by SARS-CoV-2 whole-genome sequencing, can detect variations in up to 10 viral genome positions at once and is specific and highly sensitive for identification of all tested SARS-CoV-2 clades, even in the case of samples very diluted and of poor quality, particularly difficult to analyze.
Project description:To search for host factors regulating SARS-COV-2 infection, we performed a genome-wide loss-of-function CRISPR/Cas9 screen in haploid human ESCs. The regulators were identified by the quantification of enrichment of their mutant clones within a pooled loss-of-function library upon SARS-COV-2 infection.
Project description:To further investigate the underlying mechanisms of severe acute respiratory syndrome (SARS) pathogenesis and evaluate the therapeutic efficacy of potential drugs and vaccines it is necessary to use an animal model that is highly representative of the human condition in terms of respiratory anatomy, physiology and clinical sequelae. The ferret, Mustela putorius furo, supports SARS-CoV replication and displays many of the symptoms and pathological features seen in SARS-CoV-infected humans. We have recently established a SARS-CoV infection-challenge ferret platform for use in evaluating potential therapeutics to treat SARS. The main objective of the current study was to extend our previous results and identify early host immune responses upon infection and determine immune correlates of protection upon challenge with SARS-CoV in ferrets. Keywords: time course This study is a simple time course (58 day) examination of host responses in 35 SARS-CoV (TOR2) infected ferrets with the addition of a challenge inoculation of SARS CoV (TOR2) at day 29 post infection. Three mock-infected ferrets are included as negative controls. Due to the unavailability of ferret microarrays, Affymetrix Canine 2.0 oligonucleotide arrays were chosen following sequence analysis of our ferret cDNA library (~5000 clones) and demonstration of high levels of homology (>80%) between dog and ferret.
Project description:Purpose: The goal of this study is to understand the response and pathology of the epigenome upon infection with SARS-CoV-2 in lung and heart tissues Methods: AT2 and induced cardiomyocytes were infected (MOI 4) with SARS-CoV-2 or Mock infection control for 48 hours followed by chromatin immunoprecipitation and sequencing. Results: global differences in hPTMs were observed upon infection related to SARS-CoV-2 histone mimicry Conclusions: SARS-CoV-2 sucks
Project description:On March 12, 2020, the World Health Organization (WHO) declared COVID-19 as a global pandemic. COVID-19 is produced by a novel β-coronavirus known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1]. Several studies have detected SARS-CoV-2 RNA in urine, feces, and other biofluids from both symptomatic and asymptomatic people with COVID-19 [2], suggesting that SARS-CoV-2 RNA could be detected in human wastewater [3]. Thus, wastewater-based epidemiology (WBE) is now used as an approach to monitor COVID-19 prevalence in many different places around the world [4-10] . Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is the most common SARS-CoV-2 detection method in WBE, but there are other methods for viral biomolecule detection that could work as well. The aim of this study was to evaluate the presence of SARS-CoV-2 proteins in untreated wastewater (WW) influents collected from six wastewater treatment plants (WWTPs), from Durham Region, Ontario, Canada, using a LC-MS/MS-based proteomics approach. We identified many SARS-CoV-2 proteins in these wastewater samples, with peptides from pp1ab being the most consistently detected and with consistent abundance.
Project description:For the assessment of host response dynamics to SARS-CoV and SARS-CoV-2 infections in human airway epithelial cells at ambient temperature corresponding to the upper or lower respiratory tract. We performed a temporal transcriptome analysis on human airway epithelial cell (hAEC) cultures infected with SARS-CoV and SARS-CoV-2, as well as uninfected hAEC cultures, incubated either at 33°C or 37°C. hAEC cultures were harvested at 24, 48 72, 96 hpi and processed for Bulk RNA Barcoding and sequencing (BRB-seq), which allows a rapid and sensitive genome-wide transcriptomic analysis in a highly multiplexed manner. Transcriptome data was obtained from a total of 7 biological donors for pairwise comparisons of SARS-CoV or SARS-CoV-2 virus-infected to unexposed hAEC cultures at respective time points and temperatures.
Project description:A recombinant SARS-CoV lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major virulence determinant in vivo. Elimination of SARS-CoV E protein PBM by using reverse genetics led to attenuated viruses (SARS-CoV-mutPBM) and to a reduction in the deleterious exacerbate immune response triggered during infection with the parental virus (SARS-CoV-wt). Cellular protein syntenin bound E protein PBM during SARS-CoV infection. Syntenin activates p38 MAPK leading to overexpression of inflammatory cytokines, and we have shown that active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM (SARS-CoV-mutPBM) as compared with the parental virus (SARS-CoV-wt), leading to a decreased expression of inflammatory cytokines and to viral attenuation. Therefore, E protein PBM is a virulence factor that activates pathogenic immune response most likely by using syntenin as a mediator of p38 MAPK induced inflammation. Three biological replicates were independently hybridized (one channel per slide) for each sample type (SARS-CoV-wt, SARS-CoV-mutPBM, Mock). Slides were Sure Print G3 Agilent 8x60K Mouse (G4852A-028005)
Project description:COVID-19 remains a significant public health threat due to the ability of SARS-CoV-2 variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and MERS-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here we used our recently developed integrative DNA And Protein Tagging (iDAPT) methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.