Project description:The ratmouth barbel (Ptychidio jordani) is a critically endangered freshwater fish from the Cyprinidae family, primarily due to overfishing and habitat disruption. To address the challenges of its shrinking wild populations and the difficulties in artificial reproduction, we sequenced, assembled, and annotated a high-quality chromosome-level genome of P. jordani using next-generation short-read sequencing, third-generation long-read sequencing, and Hi-C sequencing. The final genome assembly was 1.14 Gb, consisting of 25 chromosomes with a contig N50 of 25.14 Mb and a scaffold N50 of 42.91 Mb. We identified 25,183 protein-coding genes, 751.75 Mb of repeats, and 19,373 ncRNAs. Methylation loci on most chromosomes ranged from 1,000 to 3,000 per 100 kb window. Gene expression levels across various tissues were analyzed, revealing 12,135 (caudal fin), 11,465 (liver), 14,438 (gill), 12,413 (heart), 8,301 (spleen), and 3,578 (kidney) differentially expressed genes compared to muscle. The comprehensive genomic and transcriptomic resources generated here will aid in understanding the ecology, adaptation, and environmental responses of P. jordani, supporting future research and conservation efforts.
Project description:Chlorops oryzae is a pest of rice that has caused severe damage to crops in major rice-growing areas in recent years. We generated a 447.60 Mb high-quality chromosome-level genome with contig and scaffold N50 values of 1.17 Mb and 117.57 Mb, respectively. Hi-C analysis anchored 93.22% scaffolds to 4 chromosomes. The relatively high expression level of Heat Shock Proteins (HSPs) and antioxidant genes in response to thermal stress suggests these genes may play a role in the environmental adaptability of C. oryzae. The identification of multiple pathways that regulate reproductive development (juvenile hormone, 20-hydroxyecdsone, and insulin signaling pathways) provides evidence that these pathways also play an important role in vitellogenesis and thus insect population maintenance. These findings identify possible reasons for the increased frequency of outbreaks of C. oryzae in recent years. Our chromosome-level genome assembly may provide a basis for further genetic studies of C. oryzae, and promote the development of novel, sustainable strategies to control this pest.
Project description:The ratmouth barbel (Ptychidio jordani) is a critically endangered freshwater fish from the Cyprinidae family, primarily due to overfishing and habitat disruption. To address the challenges of its shrinking wild populations and the difficulties in artificial reproduction, we sequenced, assembled, and annotated a high-quality chromosome-level genome of P. jordani using next-generation short-read sequencing, third-generation long-read sequencing, and Hi-C sequencing. The final genome assembly was 1.14 Gb, consisting of 25 chromosomes with a contig N50 of 25.14 Mb and a scaffold N50 of 42.91 Mb. We identified 25,183 protein-coding genes, 751.75 Mb of repeats, and 19,373 ncRNAs. Methylation loci on most chromosomes ranged from 1,000 to 3,000 per 100 kb window. Gene expression levels across various tissues were analyzed, revealing 12,135 (caudal fin), 11,465 (liver), 14,438 (gill), 12,413 (heart), 8,301 (spleen), and 3,578 (kidney) differentially expressed genes compared to muscle. The comprehensive genomic and transcriptomic resources generated here will aid in understanding the ecology, adaptation, and environmental responses of P. jordani, supporting future research and conservation efforts.
Project description:Wildlife camera traps and crowd-sourced image material provide novel possibilities to monitor endangered animal species. The massive data volumes call for automatic methods to solve various tasks related to population monitoring, such as the re-identification of individual animals. The Saimaa ringed seal (Pusa hispida saimensis) is an endangered subspecies only found in Lake Saimaa, Finland, and is one of the few existing freshwater seal species. Ringed seals have permanent pelage patterns that are unique to each individual and that can be used for the identification of individuals. A large variation in poses, further exacerbated by the deformable nature of seals, together with varying appearance and low contrast between the ring pattern and the rest of the pelage makes the Saimaa ringed seal re-identification task very challenging, providing a good benchmark by which to evaluate state-of-the-art re-identification methods. Therefore, we make our Saimaa ringed seal image (SealID) dataset (N = 57) publicly available for research purposes. In this paper, the dataset is described, the evaluation protocol for re-identification methods is proposed, and the results for two baseline methods-HotSpotter and NORPPA-are provided. The SealID dataset has been made publicly available.