Project description:The diagnosis of sinonasal tumors is challenging due to a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we apply machine learning algorithm based on DNA methylation patterns to classify sinonasal tumors with clinical-grade reliability. We further show that sinonasal tumors with SNUC morphology are not as undifferentiated as their current terminology suggests but rather reassigned to four distinct molecular classes defined by epigenetic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SMARCA4/ARID1A mutations with an overall favorable clinical course, whereas tumors that are driven by SMARCB1-deficiency and tumors that represent previously misclassified adenoid cystic carcinomas are highly aggressive. Our findings have the potential to dramatically improve the diagnostic classification of sinonasal tumors and will fundamentally change the current perception of SNUCs.
Project description:The histopathological diagnosis of sinonasal tumors is challenging as it encompasses a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we show that a machine learning algorithm based on DNA methylation is able to classify sinonasal tumors with clinical-grade reliability. We further show that tumors with SNUC morphology are not as undifferentiated as their current terminology suggests, but can be assigned to four molecular classes defined by distinct epigenic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SWI/SNF chromatin remodeling complex mutations and overall favorable clinical course, highly aggressive tumors that are driven by SMARCB1-deficiency and tumors that represent previously misclassified adenoid-cystic carcinomas. Our findings have the potential to dramatically improve the diagnostic of challenging sinonasal tumors and could fundamentally change the current perception of SNUCs.
Project description:Focal Cortical Dysplasia (FCD) is a major cause of drug-resistant focal epilepsy in children and the clinico-pathological classification remains a challenging issue in daily practice. With the recent progress in DNA methylation based classification of human brain tumors we examined, whether genomic DNA methylation and gene expression analysis can be used to also distinguish human FCD subtype