Project description:Systems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans. Whether such signatures are similar across multiple seasons, and in diverse populations is unknown. We applied systems approaches to study immune responses in young and, elderly subjects vaccinated with the seasonal influenza vaccine across 5 consecutive seasons. During the 2011 Influenza season, healthy adults were vaccinated with TIV, and blood samples isolated at days 0, 3, 7 post-vaccination. Microarrays were performed using total RNA extracted from the peripheral blood mononuclear cells of vaccinees.
Project description:Systems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans. Whether such signatures are similar across multiple seasons, and in diverse populations is unknown. We applied systems approaches to study immune responses in young and, elderly subjects vaccinated with the seasonal influenza vaccine across 5 consecutive seasons. During the 2009 Influenza season, healthy adults were vaccinated with TIV, and blood samples isolated at days 0, 3, 7 post-vaccination. Microarrays were performed using total RNA extracted from the peripheral blood mononuclear cells of vaccinees.
Project description:Systems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology. Here we used the systems vaccinology approach to study the molecular mechanisms underlying the innate responses to the trivalent inactivated influenza (TIV) and live attenuated influenza (LAIV) vaccination in humans, and to identify early gene signatures that predict the magnitude of the antibody responses to influenza vaccination. During the 2008 influenza season, healthy adults were vaccinated with LAIV (28 vaccinees), and blood samples isolated at days 0, 3, 7 post-vaccination. Microarrays were performed using total RNA extracted from the peripheral blood mononuclear cells of vaccinees.
Project description:Systems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology. Here we used the systems vaccinology approach to study the molecular mechanisms underlying the innate responses to the trivalent inactivated influenza (TIV) and live attenuated influenza (LAIV) vaccination in humans, and to identify early gene signatures that predict the magnitude of the antibody responses to influenza vaccination. During the 2008 influenza season, healthy adults were vaccinated with TIV (28 vaccinees), and blood samples isolated at days 0, 3, 7 post-vaccination. Microarrays were performed using total RNA extracted from the peripheral blood mononuclear cells of vaccinees.
Project description:Systems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology. Here we used the systems vaccinology approach to study the molecular mechanisms underlying the innate responses to the trivalent inactivated influenza (TIV) and live attenuated influenza (LAIV) vaccination in humans, and to identify early gene signatures that predict the magnitude of the antibody responses to influenza vaccination. During the 2007 Influenza season, healthy adults were vaccinated with TIV (9 vaccinees), and blood samples isolated at days 0, 3, 7 post-vaccination. Microarrays were performed using total RNA extracted from the peripheral blood mononuclear cells of vaccinees.
Project description:Systems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans. Whether such signatures are similar across multiple seasons, and in diverse populations is unknown. We applied systems approaches to study immune responses in young and, elderly subjects vaccinated with the seasonal influenza vaccine across 5 consecutive seasons. During the 2010 Influenza season, healthy adults were vaccinated with TIV, and blood samples isolated at days 0, 3, 7 post-vaccination. Microarrays were performed using total RNA extracted from the peripheral blood mononuclear cells of vaccinees.
Project description:Systems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans. Whether such signatures are similar across multiple seasons, and in diverse populations is unknown. We applied systems approaches to study immune responses in young and, elderly subjects vaccinated with the seasonal influenza vaccine across 5 consecutive seasons. During the 2010 Influenza season, healthy adults were vaccinated with TIV, and blood samples isolated at days 0, 1, 3, 7, 14 post-vaccination. Microarrays were performed using total RNA extracted from the peripheral blood mononuclear cells of vaccinees.
Project description:Using a test-negative case-control design, we aim to estimate influenza vaccine effectiveness (VE) against medically attended laboratory-confirmed influenza in Portugal in 2022/2023 season. Between week 41/2022 and week 14/2023, data on 592 patients with influenza-like illness aged 18 or more years old were collected by the national sentinel influenza surveillance system in primary care settings. Of those, 218 were positive for influenza and 374 were negative controls. We estimated seasonal influenza VE as (1-odds ratio)*100% of being vaccinated in laboratory-confirmed influenza cases vs. negative controls using logistic regression model adjusted for age group, sex, presence of chronic conditions, and month of symptoms onset. The seasonal VE was 59.3% (95% confidence interval (CI): 27.3 to 77.3) against any laboratory-confirmed influenza and not statistically significant 44.5% (95% CI: -5.6 to 70.8) against influenza A (H3N2). In the 2022/2023 season, characterized by early and low influenza activity and predominant A (H3N2) circulation, vaccination provided a moderate protection against medically attended laboratory-confirmed influenza in primary care.