Project description:A mutation that results in tumor rejection activity in a neoepitope (which is a poor binder of Kd) influences the immunogenicity of the tumor as a whole. Our results demonstrate the activity in vivo of a poorly-MHC I-binding cancer neoepitope.
Project description:By using >36,000 immunogenicity assay results, we developed a method to identify peptide-MHC complexes whose structural alignment facilitates T cell reaction. Our method accurately predicted neoepitopes for MHC II as well as MHC I that were responsive to checkpoint blockade when applied to >1,200 samples of various tumor types and on-therapy melanoma samples. To investigate selection by spontaneous immunity at the single epitope level, we analyzed the frequency spectrum of >25 million mutations in >9,000 treatment-naïve tumors in association with >100 immune phenotypes. MHC II immunogenicity specifically lowered variant frequencies in tumors under high immune pressure particularly with high TCR clonality and MHC II expression.
Project description:The immune response against tuberculosis relies, at least in part, on CD4+ T cells. Protective vaccines require the induction of antigen-specific CD4+ T cells via mycobacterial peptides presented by MHC class-II in infected macrophages. We have purified MHC class-I and MHC-II peptides and analysed them by mass spectrometry. We have successfully identified 97 mycobacterial peptides presented by MHC-II and 54 presented by MHC-I, from 76 and 41 antigens, respectively. The sequences of selected peptides were confirmed by spectral match validation and immunogenicity evaluated by IFN-gamma ELISpot against peripheral blood mononuclear cells from volunteers vaccinated with BCG, M.tb latently infected subjects or patients with tuberculosis disease. Three antigens were expressed in viral vectors, and evaluated as vaccine candidates alone or in combination in a murine aerosol M.tb challenge model. When delivered in combination, the three candidate vaccines conferred significant protection in the lungs and spleen compared with BCG alone, demonstrating proof-of-concept for this unbiased approach to identifying novel candidate antigens.
Project description:This mathematical model describes interactions between glioma tumors and the immune system that may occur following direct intra-tumoral administration of ex-vivo activated alloreactive cytotoxic-T-lymphocytes (aCTLs) as part of adoptive immunotherapy. The model includes descriptions of aCTL, neoplastic cells, MHC class I and II molecules, TGF-beta and IFN-gamma.
Project description:The appended raw files, csv files and other documents were deposited in the public domain in support for the publication "Expanding the MAPPs assay to accommodate MHC-II pan re-ceptors for improved predictability of potential T cell epitopes" by Katharina Hartman, Guido Steiner, Michel Siegel, Cary M. Looney, Timothy P. Hickling, Katharine Bray-French, Sebastian Springer, Celine Marban-Doran and Axel Ducret.
The abstract is as follows: A critical step in the immunogenicity cascade is attributed to human leukocyte antigen (HLA) II presentation triggering T cell immune responses. The liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based major histocompatibility complex (MHC) II-associated peptide proteomics (MAPPs) assay is implemented during preclinical risk assessments to identify bio-therapeutic-derived T cell epitopes. Although studies indicate HLA-DP and HLA-DQ alleles are linked to immunogenicity, most MAPPs studies are restricted to HLA-DR as the dominant HLA II genotype due to lack of well-characterized immunoprecipitating antibodies. Herein we ad-dress this issue by testing various commercially-available clones of MHC-II pan (CR3/43, WR18, and Tu39), HLA-DP (B7/21), and HLA-DQ (SPV-L3 and 1a3) antibodies in the MAPPs assay, and characterizing identified peptides according to binding specificity. Our results reveal that HLA II receptor-precipitating reagents with similar reported specificities differ based on clonality and that MHC-II pan antibodies do not entirely exhibit pan-specific tendencies. Since no individual antibody clone is able to recover the complete HLA II peptide repertoire, we recommend a mixed strategy of clones L243, WR18, and SPV-L3 in a single immunoprecipitation step for more robust compound-specific peptide detection. Ultimately, our optimized MAPPs strategy im-proves the predictability and additional identification of T cell epitopes in immunogenicity risk assessments.
The dataset is divided in two sections, one supporting the figures 1-4, the other one supporting the figure 5-6. The collective data has aslo be used to generate the supplementary tables S1-S9.
Project description:Decoy receptor 3 (DcR3) is a member of the TNF receptor superfamily and is up-regulated in tumors that originate from a diversity of lineages. DcR3 is capable of promoting angiogenesis, inducing dendritic cell apoptosis, and modulating macrophage differentiation. Since tumor-associated macrophages (TAMs) are the major infiltrating leukocytes in most malignant tumors, we used microarray technology to investigate whether DcR3 contributes to the development of TAMs. Among the DcR3-modulated genes expressed by TAMs, those that encode proteins involved in MHC class II (MHC-II)-dependent antigen presentation were down-regulated substantially, together with the master regulator of MHC-II expression (the class II transactivator, CIITA). The ERK- and JNK-induced deacetylation of histones associated with the CIITA promoters was responsible for DcR3-mediated down-regulation of MHC-II expression. Furthermore, the expression level of DcR3 in cancer cells correlated inversely with HLA-DR levels on TAMs and with the overall survival time of pancreatic cancer patients. The role of DcR3 in the development of TAMs was further confirmed using transgenic mice over-expressing DcR3. This elucidates the molecular mechanism of impaired MHC-II-mediated antigen presentation by TAMs, and raises the possibility that subversion of TAM-induced immunosuppression via inhibition of DcR3 expression might represent a target for the design of new therapeutics. Experiment Overall Design: Freshly isolated human monocytes were cultured with DcR3 or control hIgG1 in the presence of M-CSF for 2 days. Data were collected from two independent donors