Project description:The ratio of forage to concentrate in cattle feeding has a major influence on the composition of the microbiota in the rumen and on the mass of methane produced. Using methane measurements and microbiota data from 26 cattle we aimed to investigate the relationships between microbial relative abundances and methane emissions, and identify potential biomarkers, in animals fed two extreme diets - a poor quality fresh cut grass diet (GRASS) or a high concentrate total mixed ration (TMR). Direct comparisons of the effects of such extreme diets on the composition of rumen microbiota have rarely been studied. Data were analyzed considering their multivariate and compositional nature. Diet had a relevant effect on methane yield of +10.6 g of methane/kg of dry matter intake for GRASS with respect to TMR, and on the centered log-ratio transformed abundance of 22 microbial genera. When predicting methane yield based on the abundance of 28 and 25 selected microbial genera in GRASS and TMR, respectively, we achieved cross-validation prediction accuracies of 66.5 ± 9% and 85 ± 8%. Only the abundance of Fibrobacter had a consistent negative association with methane yield in both diets, whereas most microbial genera were associated with methane yield in only one of the two diets. This study highlights the stark contrast in the microbiota controlling methane yield between animals fed a high concentrate diet, such as that found on intensive finishing units, and a low-quality grass forage that is often found in extensive grazing systems. This contrast must be taken into consideration when developing strategies to reduce methane emissions by manipulation of the rumen microbial composition.
Project description:Beef represents a major diet component and one of the major sources of protein in human. The beef industry in the United States is currently undergoing changes and is facing increased demands especially for natural grass-fed beef. The grass-fed beef obtained their nutrients directly from pastures, which contained limited assimilable energy but abundant amount of fiber. On the contrary, the grain-fed steers received a grain-based regime that served as an efficient source of high-digestible energy. Lately, ruminant animals have been accused to be a substantial contributor for the green house effect. Therefore, the concerns from environmentalism, animal welfare and public health have driven consumers to choose grass-fed beef. Rumen is one of the key workshops to digest forage constituting a critical step to supply enough nutrients for animals’ growth and production. We hypothesize that rumen may function differently in grass- and grain-fed regimes. The objective of this study was to find the differentially expressed genes in the ruminal wall of grass-fed and grain-fed steers, and then explore the potential biopathways. In this study, the RNA Sequencing (RNA-Seq) method was used to measure the gene expression level in the ruminal wall. The total number of reads per sample ranged from 24,697,373 to 36,714,704. The analysis detected 342 differentially expressed genes between ruminal wall samples of animals raised under different regimens. The Fisher’s exact test performed in the Ingenuity Pathway Analysis (IPA) software found 16 significant molecular networks. Additionally, 13 significantly enriched pathways were identified, most of which were related to cell development and biosynthesis. Our analysis demonstrated that most of the pathways enriched with the differentially expressed genes were related to cell development and biosynthesis. Our results provided valuable insights into the molecular mechanisms resulting in the phenotype difference between grass-fed and grain-fed cattle. Ruminal wall samples from two randomly chosen animals per group were obtained, totaling four samples. The animals were born, raised and maintained at the Wye Angus farm. This herd, which has been closed for almost 75 years and yielded genetically similar progenies, constitutes an excellent resource to perform transcriptomic analysis. The genetic resemblance among individuals permits us to better control the cause of variation between experimental clusters and individuals. The randomly chosen pairs of animals were part of larger sets of steers that received a particular treatment. All animals received the same diet until weaning. The grain group received conventional diet consisting of corn silage, shelled corn, soy bean and trace minerals. The grass fed steers consumed normally grazed alfalfa; during wintertime, bailage was utilized. The alfalfa has been harvested from land without any fertilizers, pesticides or other chemicals. The steers ate no animal, agricultural or industrial byproducts and never receive any type of grain. Then, the calves were randomly assigned to one diet and exclusively received that regimen until termination. Grain–fed animals reached the market weight around the age of 14 month-old, however, grass-fed steers required approximately 200 additional days to achieve the same weight. Immediately after termination at the Old Line Custom Meat Company (Baltimore, MD) a small piece of ruminal wall was excised, cleaned and preserved at -80°C for posterior processing.
Project description:Beef represents a major diet component and one of the major sources of protein in human. The beef industry in the United States is currently undergoing changes and is facing increased demands especially for natural grass-fed beef. The grass-fed beef obtained their nutrients directly from pastures, which contained limited assimilable energy but abundant amount of fiber. On the contrary, the grain-fed steers received a grain-based regime that served as an efficient source of high-digestible energy. Lately, ruminant animals have been accused to be a substantial contributor for the green house effect. Therefore, the concerns from environmentalism, animal welfare and public health have driven consumers to choose grass-fed beef. Rumen is one of the key workshops to digest forage constituting a critical step to supply enough nutrients for animals’ growth and production. We hypothesize that rumen may function differently in grass- and grain-fed regimes. The objective of this study was to find the differentially expressed genes in the ruminal wall of grass-fed and grain-fed steers, and then explore the potential biopathways. In this study, the RNA Sequencing (RNA-Seq) method was used to measure the gene expression level in the ruminal wall. The total number of reads per sample ranged from 24,697,373 to 36,714,704. The analysis detected 342 differentially expressed genes between ruminal wall samples of animals raised under different regimens. The Fisher’s exact test performed in the Ingenuity Pathway Analysis (IPA) software found 16 significant molecular networks. Additionally, 13 significantly enriched pathways were identified, most of which were related to cell development and biosynthesis. Our analysis demonstrated that most of the pathways enriched with the differentially expressed genes were related to cell development and biosynthesis. Our results provided valuable insights into the molecular mechanisms resulting in the phenotype difference between grass-fed and grain-fed cattle.
Project description:The biological mechanisms associated with the residual feed intake in ruminants have been harnessed immensely via transcriptome analysis of liver and ruminal epithelium, however, this concept has not been fully explored using whole blood. We applied whole blood transcriptome analysis and gene set enrichment analysis to identify key pathways associated with divergent selection for low or high RFI in beef cattle. A group of 56 crossbred beef steers (average BW = 261.3 ± 18.5 kg) were adapted to a high-forage total mixed ration in a confinement dry lot equipped with GrowSafe intake nodes for period of 49 d to determine their residual feed intake (RFI). After RFI determination, weekly whole blood samples were collected three times from beef steers with the lowest RFI (most efficient; low-RFI; n = 8) and highest RFI (least efficient; high-RFI; n = 8). Prior to RNA extraction, whole blood samples collected were composited for each steer. Sequencing was performed on an Illumina NextSeq2000 equipped with a P3 flow. Gene set enrichment analysis (GSEA) was used to analyze differentially expressed gene sets and pathways between the two groups of steers. Results of GSEA revealed pathways associated with metabolism of proteins, cellular responses to external stimuli, stress, and heat stress were differentially inhibited (false discovery rate (FDR) < 0.05) in high-RFI compared to low-RFI beef cattle, while pathways associated with binding and uptake of ligands by scavenger receptors, scavenging of heme from plasma, and erythrocytes release/take up oxygen were differentially enriched (FDR < 0.05) in high-RFI, relative to low-RFI beef cattle. Taken together, our results revealed that beef steers divergently selected for low or high RFI revealed differential expressions of genes related to protein metabolism and stress responsiveness.
Project description:An abrupt transition from high forage to high fermentable diet may induce digestive disorders in the rumen. To date, the host mechanisms regulate the adaption to such dietary transition are largely unknown. To understand the molecular mechanisms involved in such phenomena, RNA-sequencing was performed to identify the changes in the transcriptomes of ruminal epithelia during a rapid high grain transition from 3% to 92% grain. In total, the expression of 11,044, 11,322 and 11,282 genes was detected in ruminal epithelia of beef heifers (n=15) fed 3%, 75% and 92% barley grain diet, respectively. When diet was changed from 75% to 92% grain, a significant difference was observed in the mean ruminal pH change among the individuals with five heifers decreased (DG; pH from 6.30 ± 0.09 to 5.87 ± 0.15, P < 0.01) and five other ones increased (UG; pH from 5.84 ± 0.42 to 6.35 ± 0.37, P < 0.05). In the ruminal epithelia of DG animals, the expression of genes involved in ketogenesis (HMGCL, P < 0.1) and lipid synthesis (SREBF2, P < 0.1; FABP4, P < 0.05) was increased, the abundance of genes involved in short chain fatty acid transporters (SMCT1, P < 0.1) and monocarboxylate transporters (MCT4, P < 0.1) was decreased. The function of “Concentration of lipid” was activated after 75% to 92% grain diet transition. Comparing to DG animals, the expression of ketogenesis (ACAT2, P < 0.05; HMGCS P < 0.1) and cholesterol synthesis related genes (HMGC and FDPs, P < 0.1) was deceased, while the expression of proton and cholesterol efflux related genes NHE3 and ABCA1 were increased (P < 0.05), and the function of “Storage of lipid” was inhibited in the ruminal epithelial of UG heifers. In addition, the function of differentially expressed (DE) genes in DG were involved in “T cell receptor signaling” and “complement and coagulation cascades” pathways, while the functions “metabolism of xenobiotics by cytochrome P450” and “p53 signaling pathway” were enriched for DE genes in UG animals. Furthermore, the single nucleotide polymorphisms (SNP) discovery by RNA-seq was performed, and SNP (g.46834311A > G) in FABP4 identified between two groups of animals (P < 0.1). The expression of genes involved in regulating lipid transport and fatty acid metabolism varied between DG and UG heifers during rapid 75% to 92% grain transition. The identified genes and SNP could be potential markers and may account for the varied ruminal pH responses between DG and UG heifers, which can be potentially applied in breeding and selecting beef cattle with more tolerance in dietary transition stress.
Project description:The objectives of the present work were to evaluate the in vivo antimethanogenic effects of Cymbopogon citratus (CC), Matricaria chamomilla (MC) and Cosmos bipinnatus (CB) on beef cattle fed a high in concentrate diet (forage-to-concentrate ratio [F:C] of 19.4:80.6), and the effects of increasing levels of CC (0%, 2%, 3%, and 4% of the daily DM intake (DMI)) on enteric CH4 emissions by beef cattle fed a ration low in concentrate (F:C ratio of 49.3:50.7). Two experiments were conducted to address the objectives. For the first experiment, eight Charolais × Brown Swiss steers distributed in a replicated 4 × 4 Latin square experimental design were used. Four treatments were evaluated: (1) control diet (CO), (2) CO + 365 g dry matter (DM)/d CB, (3) CO + 365 g DM/d MC, (4) CO + 100 g DM/d CC. For Experiment 2, four Charolais x Brown Swiss steers distributed in a single 4 × 4 Latin square design were used. It was concluded that 100 g DM per day CC and 365 g DM per day CB (Experiment 1) reduced CH4 yield of beef cattle. In Experiment 2, CC supplementation levels exceeding 2% of DMI reduced daily CH4 emissions but at the expense of decreasing digestibility of DM.
Project description:Beef tenderness is a complex trait of economic importance for the beef industry. Understanding the genetic and epigenetic mechanisms underlying this trait may help improve the accuracy of breeding programs and deliver a better product quality to consumers. However, little is known about epigenetic effects in the muscle of Bos taurus and their implications in tenderness, and no studies have been conducted in Bos indicus. Therefore, we analyzed Reduced Representation Bisulfite Sequencing (RRBS) to search for differences in the methylation profile of Bos indicus skeletal muscle with extreme values for beef tenderness (tender = 6 animals, tough = 6 animals).
Project description:The goal was to identify beef marbling related genes. Comparisons of skeletal muscle of well-marbled beef (HER, H-F) vs. lean beef (LIM). H-F vs. LIM -Dye-swap experiment
Project description:We explored the effect of long-term high-concentrate diet feeding on ruminal pH and fermentation, and its effect on the rumen epithelial transcriptomes in Japanese Black beef cattle during a 20-month fattening period.