Project description:We established a bacteria infective intestinal inflammation in turbot (Scophthalmus maximus). And found that β-glucan could significantly alleviate the phenotype of turbot intestinal inflammation. We performed single cell transcriptome analysis to study bacteria infective intestinal inflammation and the effects of β-glucan. Furthermore, we revealed that β-glucan through activates Th17 cells to alleviate intestinal inflammation in turbot.
Project description:Cell types of turbot blood leukocytes remian unknown. We used single cell RNA sequencing (scRNA-seq) to analyze the cell types of turbot blood leukocytes.
Project description:To investigate the impact of pathogenic immune stimulation on the lipid droplet (LD) proteome of turbot (Scophthalmus maximus), turbot were intraperitoneally injected with PBS (XA01292LQ_P), wild-type Edwardsiella piscicida EIB202 (XA01292LQ_W), or inactivated E. piscicida EIB202 (XA01292LQ_T). Liver tissues were collected, and LDs were extracted for 4D label-free quantitative proteomics analysis.
Project description:With the aim of shedding light on the protection conferred by the DNA vaccines based in the G glycoprotein of viral haemorrhagic septicaemia virus (VHSV) in turbot (Scophthalmus maximus) we have used a specific microarray highly enriched in antiviral sequences to carry out the transcriptomic study associated to VHSV DNA vaccination/infection. The differential gene expression pattern in response to empty plasmid (pMCV1.4) and DNA vaccine (pMCV1.4-G860) intramuscular administration with regard to non-stimulated turbot was analyzed in head kidney at 8, 24 and 72 hours post-vaccination. Moreover, the effect of VHSV infection one month after immunization was also analyzed in vaccinated and non-vaccinated fish at the same time points. A total number of 204 juvenile turbot were divided into 3 groups, two of them containing 72 fish and the last one 60 fish. Turbot were anaesthetized by immersion in 50 mg/ml buffered tricaine methanesulfonate (MS-222; Sigma) and then, fish from the first two groups were intramuscularly (i.m.) injected with 50 µl of PBS containing 2 µg of pMCV1.4 or pMCV1.4-G860. Turbot from the last batch were i.m. inoculated with 50 µl of PBS. At 8, 24 and 72 h after injection, 12 fish were removed from the first two tanks and, at 8 h after PBS inoculation, other 12 fish were taken from the last tank. These turbot were sacrificed by anaesthetic overdose and the head kidney was removed. Equal amounts of tissue from three fish belonging to the same tank and sampling point were pooled, obtaining 4 biological replicates for each treatment and time point (3 turbot/replicate). The remaining fish (36 in the plasmid-injected groups and 48 in the PBS-inoculated tank) were maintained during one month and then, 12 fish from the PBS injected group were separated to another tank. This new group of fish was intraperitoneally (i.p.) injected with 50 µl of MEM + penicillin and streptomycin + 2% FBS (PBS - MEM group), whereas the other turbot were i.p. infected with a dose of VHSV860 of 5 x 105 TCID50/fish (pMCV1.4 - VHSV and pMCV1.4-G860 - VHSV groups). At 8, 24 and 72 hours after infection, 12 fish were removed from the VHSV-infected tanks, and at 8 h after MEM injection the 12 fish were taken from the non-infected tank. The fish were sacrificed by anaesthetic overdose and the head kidney was removed. Equal amounts of tissue from three fish belonging to the same tank and sampling point were pooled, obtaining 4 biological replicates for treatment and time point (3 turbot/replicate)
Project description:Hornyhead turbot (Pleuronichthys verticalis) captured near sewage outfalls are used as sentinel fish for monitoring exposure to industrial and agricultural chemicals of ~20 million people living in coastal southern California. Although analyses of hormones in blood and organ morphology and histology in fish are useful for assessing exposure, there is a need for quantitative and sensitive molecular measurements, as many contaminants produce subtle effects. A novel multispecies microarray and qRT-PCR were used to investigate endocrine disruption in turbot captured near sewage outfalls in San Diego, Orange County and Los Angeles California. Analysis of expression of genes involved in hormone [e.g. estrogen, androgen, thyroid] responses and xenobiotic metabolism in turbot livers was correlated with phenotypic end points.
Project description:We evaluated the expression profiles of turbot in spleen, liver and head kidney across five temporal points of the Philasterides dicentrarchi infection process using an 8x15K Agilent oligo-microarray. The microarray included 2,176 different 5-fold replicated gene probes designed from a turbot 3’ sequenced EST database. We were able to identify 221 differentially expressed (DE) genes (8.1% of the whole microarray), 113 in spleen, 83 in liver and 90 in head kidney, in at least one of the 5 temporal points sampled for each organ. Most of these genes could be annotated (83.0%) and functionally categorized using GO terms (69.1%) after the additional sequencing of DE genes from the 5’ end. Many DE genes were related to innate and acquired immune functions. A high proportion of DE genes were organ-specific (70.6%), although their associated GO functions showed notable similarities in the three organs. The most striking difference in functional distribution was observed between the up- and down-regulated gene groups. Up-regulated genes were mostly associated to immune functions, while down-regulated ones mainly involved metabolism-related genes. Genetic response appeared clustered in a few groups of genes with similar expression profiles along the temporal series. The information obtained will aid to understand the turbot immune response and will specifically be valuable to develop strategies of defense to P. dicentrarchi to achieve more resistant broodstocks for turbot industry.
Project description:Turbot (Scophthalmus maximus) is a valuable resource for aquaculture in Galicia (NW Spain). Since it has been observed that viral hemorraghic septicaemia can affect turbot, among other finfish, increase of knowledge in molecular factors affected by the exposure to pathogen could help to develop strategies of VHSV prevention and treatment. In this study, it has been used a custom oligo-microarray by Agilent to identify genes differentially expressed in several turbot families showing different susceptibility to VHSV. Fishes from each family (n=30) were injected with either VHSV (Resistant) or control medium (Naive) and monitored for 30 days, when each group was splitted in two new groups and rechallenged with VHSV (Infected) or control medium (Control). Gene expression at the head kidney was evaluated, showing than an important proportion of the variation of the gene expression profiles is explained by the genetic background (family). After infection, fish showed an up-regulation of the interferon-induced Mx2 gene, the IL-8 gene and the VHSV-induced protein 5 gene compared with control groups. Familes with high mortality after VHSV infection showed lower levels of expression of molecules secreted in the mucus and, by contrast, higher expression of genes involved in viral entrance into target cells. 4 different families of turbot were subjected to challenged with VHSV and splitted after 30 days in 2