Project description:Medieval era encounters of nomadic groups of the Eurasian Steppe and largely sedentary East Europeans had a variety of demographic and cultural consequences. Amongst these outcomes was the emergence of the Lipka Tatars - a Slavic-speaking Sunni-Muslim ethno-religious minority residing in modern Belarus, Lithuania and Poland, whose ancestors arrived in these territories via several migration waves, mainly from the Golden Horde. Our results show that Belarusian Lipka Tatars share a substantial part of their gene pool with Europeans as indicated by their Y-chromosomal, mitochondrial DNA and autosomal variation. Nevertheless, Belarusian Lipkas still retain a strong genetic signal of their nomadic ancestry, witnessed by the presence of common Y-chromosomal and mitochondrial DNA variants as well as autosomal segments identical by descent between Lipkas and East Eurasians from temperate and northern regions. Hence, we document Lipka Tatars as a unique example of former Medieval migrants into Central Europe, who became sedentary, changed language to Slavic, yet preserved their faith and retained, both uni- and bi-parentally, a clear genetic echo of a complex population interplay throughout the Eurasian Steppe Belt, extending from Central Europe to northern China.
Project description:Medieval era encounters of nomadic groups of the Eurasian Steppe and largely sedentary East Europeans had a variety of demographic and cultural consequences. Amongst these outcomes was the emergence of the Lipka Tatars - a Slavic-speaking Sunni-Muslim ethno-religious minority residing in modern Belarus, Lithuania and Poland, whose ancestors arrived in these territories via several migration waves, mainly from the Golden Horde. Our results show that Belarusian Lipka Tatars share a substantial part of their gene pool with Europeans as indicated by their Y-chromosomal, mitochondrial DNA and autosomal variation. Nevertheless, Belarusian Lipkas still retain a strong genetic signal of their nomadic ancestry, witnessed by the presence of common Y-chromosomal and mitochondrial DNA variants as well as autosomal segments identical by descent between Lipkas and East Eurasians from temperate and northern regions. Hence, we document Lipka Tatars as a unique example of former Medieval migrants into Central Europe, who became sedentary, changed language to Slavic, yet preserved their faith and retained, both uni- and bi-parentally, a clear genetic echo of a complex population interplay throughout the Eurasian Steppe Belt, extending from Central Europe to northern China. 6 samples were analysed with the Illumina platform HumanOmniExpress-24 v1.0 BeadChip and are described herein. Please note that the submitted information does not compromise participant privacy and is in accord with the original consent in addition to all applicable laws, regulations, and institutional policies. The submitter verified that there are no privacy concerns and that our human data can be open access.
Project description:Over the past few years, studies of DNA isolated from human fossils and archaeological remains have generated considerable novel insight into the history of our species. Several landmark papers have described the genomes of ancient human ancestors and have demonstrated that contemporary humans harbour genetic material from ancient close relatives, the Neanderthals and Denisovans, and that ancient human individuals are often genetically distinct from nearby extant populations whilst also showing affinities with populations from further afield. Across West Eurasia, there is growing genetic evidence of large-scale, dynamic population movements over the period between 10,000 to 2,000 years ago, such that the ancestry across present-day populations is likely to be a mixture of several ancient groups. Whilst these efforts are bringing the details of West Eurasian prehistory into increasing focus, studies aimed at understanding the processes behind the generation of the current West Eurasian genetic landscape have been limited by the number of populations sampled, or have been either too regional or global in their outlook. Here, using recently described haplotype-based techniques, we present the results of a systematic survey of recent admixture history across Western Eurasia and show that admixture is a universal property across almost all groups. Admixture in all regions except North Western Europe involved the influx of genetic material from outside of West Eurasia, which we date to specific time periods. Within Northern, Western, and Central Europe, admixture tended to occur between local groups during the period 300 to 1200CE. Comparisons of the genetic profiles of West Eurasians before and after admixture show that population movements within the last 1500 years are likely to have maintained differentiation amongst groups. Our analysis provides a timeline of the gene flow events that have generated the contemporary genetic landscape of West Eurasia.
Project description:Prp4-1 and wt strains were grown at 26°C to A600 of 1.0, then an equal volume of 48°C media was added to bring the temperature to 37°C. Both strains were allowed to grow at 37°C and samples were taken at 0 (before shift), 5, 15, 30, 60, and 120 mins after shift to restrictive temperature. Keywords = splicing Keywords: time-course
Project description:Over the past few years, studies of DNA isolated from human fossils and archaeological remains have generated considerable novel insight into the history of our species. Several landmark papers have described the genomes of ancient human ancestors and have demonstrated that contemporary humans harbour genetic material from ancient close relatives, the Neanderthals and Denisovans, and that ancient human individuals are often genetically distinct from nearby extant populations whilst also showing affinities with populations from further afield. Across West Eurasia, there is growing genetic evidence of large-scale, dynamic population movements over the period between 10,000 to 2,000 years ago, such that the ancestry across present-day populations is likely to be a mixture of several ancient groups. Whilst these efforts are bringing the details of West Eurasian prehistory into increasing focus, studies aimed at understanding the processes behind the generation of the current West Eurasian genetic landscape have been limited by the number of populations sampled, or have been either too regional or global in their outlook. Here, using recently described haplotype-based techniques, we present the results of a systematic survey of recent admixture history across Western Eurasia and show that admixture is a universal property across almost all groups. Admixture in all regions except North Western Europe involved the influx of genetic material from outside of West Eurasia, which we date to specific time periods. Within Northern, Western, and Central Europe, admixture tended to occur between local groups during the period 300 to 1200CE. Comparisons of the genetic profiles of West Eurasians before and after admixture show that population movements within the last 1500 years are likely to have maintained differentiation amongst groups. Our analysis provides a timeline of the gene flow events that have generated the contemporary genetic landscape of West Eurasia. 20 individuals from Croatia included as part of an analysis of admixture in West Eurasia
Project description:Prp4-1 and wt strains were grown at 26°C to A600 of 1.0, then an equal volume of 48°C media was added to bring the temperature to 37°C. Both strains were allowed to grow at 37°C and samples were taken at 0 (before shift), 5, 15, 30, 60, and 120 mins after shift to restrictive temperature. Keywords = splicing