Project description:We proposed that DNA recombination/repair processes play a role in memory formation. Here, we used microarray analysis of rat amygdala genes to identify possible DNA recombination/repair factors involved in memory consolidation of conditioned taste aversion (CTA). Among the genes that showed statistically significant differential expression, we identified fen-1, encoding a flap-structure specific DNA endonuclease. Amygdalar fen-1 mRNA induction was associated to the illness component of CTA, since it could be observed by the pairing of a flavor and gastrointestinal illness, by the illness itself, but not by the presentation of the flavor alone. No CTA related induction of fen-1 expression was observed in the insular cortex. Importantly, functional validation studies demonstrated that amygdalar suppression of fen-1 expression impaired memory consolidation of CTA. Overall, our studies helped identify a new DNA recombination/repair candidate factor involved in memory formation of aversive experiences.
Project description:The purpose of this study was to examine how Mtb integrates acidic pH and available carbon sources as environmental cues to regulate its metabolism and growth rate. RNA-seq transcriptional profiling of M. tuberculosis growing at acidic or neutral pH, in pyruvate or glycerol, was examined. These studies identified carbon source-dependent and -independent pH-dependent adaptations.
Project description:Gene expression profiles of Escherichia coli K-12 W3110 were compared as a function of steady-state external pH. Cultures were grown with aeration to an optical density at 600 nm of 0.3 in potassium-modified Luria-Bertani medium buffered at pH 5.0, 7.0, and 8.7. For each of the three pH conditions, cDNA from RNA of five independent cultures was hybridized to Affymetrix E. coli arrays. Analysis of variance with a significance level of 0.001 resulted in 98% power to detect genes showing a twofold difference in expression. Normalized expression indices were calculated for each gene and intergenic region (IG). Differential expression among the three pH classes was observed for 763 genes and 353 IGs. Hierarchical clustering yielded six well-defined clusters of pH profiles, designated Acid High (highest expression at pH 5.0), Acid Low (lowest expression at pH 5.0), Base High (highest at pH 8.7), Base Low (lowest at pH 8.7), Neutral High (highest at pH 7.0, lower in acid or base), and Neutral Low (lowest at pH 7.0, higher at both pH extremes). Flagellar and chemotaxis genes were repressed at pH 8.7 (Base Low cluster), where the cell's transmembrane proton potential is diminished by the maintenance of an inverted pH gradient. High pH also repressed the proton pumps cytochrome o (cyo) and NADH dehydrogenases I and II. By contrast, the proton-importing ATP synthase F1Fo and the microaerophilic cytochrome d (cyd), which minimizes proton export, were induced at pH 8.7. These observations are consistent with a model in which high pH represses synthesis of flagella, which expend proton motive force, while stepping up electron transport and ATPase components that keep protons inside the cell. Acid-induced genes, on the other hand, were coinduced by conditions associated with increased metabolic rate, such as oxidative stress. All six pH-dependent clusters included envelope and periplasmic proteins, which directly experience external pH. Overall, this study showed that (i) low pH accelerates acid consumption and proton export, while coinducing oxidative stress and heat shock regulons; (ii) high pH accelerates proton import, while repressing the energy-expensive flagellar and chemotaxis regulons; and (iii) pH differentially regulates a large number of periplasmic and envelope proteins. Keywords: Steady State
Project description:Helicobacter pylori encounters a wide range of pH within the human stomach. In a comparison of H. pylori cultured in vitro under neutral or acidic conditions, about 15% of genes are26 differentially expressed, and corresponding changes are detectable for many of the encoded proteins. The ArsRS two-component system (TCS), comprised of the sensor kinase ArsS and its cognate response regulator ArsR, has an important role in mediating pH-responsive changes in H. pylori gene expression. In this study, we sought to delineate the pH-responsive ArsRS regulon and further define the role of ArsR in pH-responsive gene expression. We compared H. pylori strains containing an intact ArsRS system with an arsS null mutant or strains containing site32 specific mutations of a conserved aspartate residue (D52) in ArsR, which is phosphorylated in response to signals relayed by the cognate sensor kinase ArsS. We identified 178 genes that were pH-responsive in strains containing an intact ArsRS system but not in ∆arsS or arsR mutants. These constituents of the pH-responsive ArsRS regulon include genes involved in acid acclimatization (ureAB, amidases), oxidative stress responses (katA, sodB), transcriptional regulation related to iron or nickel homeostasis (fur, nikR), and genes encoding outer membrane proteins [including sabA, alpA, alpB, hopD (labA), and horA]. When comparing H. pylori strains containing an intact ArsRS TCS with arsRS mutants, each cultured at neutral pH, relatively few genes are differentially expressed. Collectively, these data suggest that ArsRS41 mediated gene regulation has an important role in H. pylori adaptation to changing pH conditions.
Project description:Metals at high concentrations can exert toxic effects on microorganisms. It has been widely reported that lowering environmental pH reduces effects of cadmium toxicity in bacteria. Understanding the effects of pH-mediated cadmium toxicity on bacteria would be useful for minimizing cadmium toxicity in the environment and gaining insight into the interactions between organic and inorganic components of life. Growth curve analysis confirmed that cadmium was less toxic to Escherichia coli at pH 5 than at pH 7 in M9 minimal salts medium. To better understand the cellular mechanisms by which lowering pH decreases cadmium toxicity, we used DNA microarrays to characterize global gene expression patterns in E. coli in response to cadmium exposure at moderately acidic (5) and neutral (7) values of pH. Higher expression of several stress response genes including hdeA, otsA, and yjbJ at pH 5 after only 5 minutes was observed and may suggest that acidic pH more rapidly induces genes that confer cadmium resistance. Genes involved in transport were more highly expressed at pH 7 than at pH 5 in the presence of cadmium. Of the genes that showed an interaction between pH and cadmium effects, 46% encoded hypothetical proteins, which may have novel functions involved in mitigating cadmium toxicity.