Project description:This study sought to evaluate the effects of dietary MeHg exposure on adult female yellow perch (Perca flavescens) and zebrafish (Danio rerio) reproduction by relating controlled exposures with subsequent reproductive effects. Yellow perch were used in the study for their socioeconomic and ecological importance within the Great Lakes basin, and the use of zebrafish allowed for a detailed analysis of the molecular effects of MeHg. MeHg exposures at environmentally relevant levels were done in zebrafish for a full life cycle, mimicking a realistic exposure scenario, and in adult yellow perch for twenty weeks, capturing early seasonal ovarian development. In zebrafish, several genes involved in reproductive processes were shown to be dysregulated by RNA-seq and QPCR, but no significant phenotypic or physiological changes were observed with ovarian staging, fecundity, or embryo mortality. Yellow perch did not appear to be affected by MeHg, either at a molecular level, as assessed by QPCR of eight genes in the pituitary, liver, and ovary tissue, or a physiological level, as seen with ovarian somatic index, circulating estradiol, and ovarian staging. Lack of impact in yellow perch limits the usefulness of zebrafish as a model and suggests that the reproductive sensitivity to environmentally relevant levels of MeHg differs between yellow perch and zebrafish.
Project description:Our main objectives wereto investigate the molecular mechanisms involved in metal toxicity and detoxification in the field using juvenile yellow perch subjected to differents levels of this metal exposure. Recent local adaptation to pollution has been evidenced in several organisms inhabiting environments heavily contaminated by metals. Nevertheless, the molecular mechanisms underlying adaptation to high metal concentrations are poorly understood, especially in fishes. Yellow perch (Perca flavescens) populations from lakes in the mining area of Rouyn-Noranda (QC, Canada) have been faced with metal contamination for about 90 years. Here, we examine gene transcription patterns of fish reciprocally transplanted between a reference and a metal-contaminated lake and also fish caged in their native lake. After four weeks, 111 genes were differentially transcribed in metal-naïve fish transferred to the metal-contaminated lake, revealing a plastic response to metal exposure. Genes involved in the citric cycle and beta-oxidation pathways were under-transcribed, suggesting a potential strategy to mitigate the effects of metal stress by reducing energy turnover. However, metal-contaminated fish transplanted to the reference lake did not show any transcriptomic response, indicating a reduced plastic response capability to sudden reduction in metal concentrations. Moreover, the transcription of other genes, especially ones involved in energy metabolism, was affected by caging. Overall, our results highlight environmental stress response mechanisms in yellow perch at the transcriptomic level and support a rapid adaptive response to metal exposure through genetic assimilation.
Project description:Our main objectives wereto investigate the molecular mechanisms involved in metal toxicity and detoxification in the field using juvenile yellow perch subjected to differents levels of this metal exposure. Recent local adaptation to pollution has been evidenced in several organisms inhabiting environments heavily contaminated by metals. Nevertheless, the molecular mechanisms underlying adaptation to high metal concentrations are poorly understood, especially in fishes. Yellow perch (Perca flavescens) populations from lakes in the mining area of Rouyn-Noranda (QC, Canada) have been faced with metal contamination for about 90 years. Here, we examine gene transcription patterns of fish reciprocally transplanted between a reference and a metal-contaminated lake and also fish caged in their native lake. After four weeks, 111 genes were differentially transcribed in metal-naïve fish transferred to the metal-contaminated lake, revealing a plastic response to metal exposure. Genes involved in the citric cycle and beta-oxidation pathways were under-transcribed, suggesting a potential strategy to mitigate the effects of metal stress by reducing energy turnover. However, metal-contaminated fish transplanted to the reference lake did not show any transcriptomic response, indicating a reduced plastic response capability to sudden reduction in metal concentrations. Moreover, the transcription of other genes, especially ones involved in energy metabolism, was affected by caging. Overall, our results highlight environmental stress response mechanisms in yellow perch at the transcriptomic level and support a rapid adaptive response to metal exposure through genetic assimilation. Comparison between fish Op and OpâOp using a pairwise design corresponding to the cage experiment in the reference lake Opasatica (Op), comparison between fish Du and DuâDu using a pairwise design corresponding to the cage experiment in the metal contaminated lake Dufault (Du), comparison between fish from reference lake transplanted to the metal contaminated lake (OpâDu) and fish from reference lake caged in their own lake (OpâOp) using pairwise design corresponding to the experiment of metal contamination, comparison between fish from metal contaminated lake transplanted to the reference lake (DuâOp) and fish from the metal contaminated lake caged in their own lake (DuâDu) using pairwise design corresponding to the depuration experiment.
Project description:Determining the physiological effects of parasites and characterizing genes involved in host responses to infections are essential to improving our understanding of host-parasite interactions and their ecological and evolutionary consequences. This task, however, is complicated by high diversity and complex life histories of many parasite species. The use of transcriptomics in the context of wild-caught specimens can help ameliorate this by providing both qualitative and quantitative information on gene expression patterns in response to parasites in specific host organs and tissues. Here, we evaluated the physiological impact of the widespread parasite, the pike tapeworm (Triaenophorus nodulosus), on its second intermediate host, the Eurasian perch (Perca fluviatilis).
Project description:Genomic differentiation among European perch Perca fluviatilis in the western Baltic Sea reflects colonisation history and local adaptation
Project description:NGS amplicon sequencing of 16S rRNA genes, mcrA, [FeFe]-hydrogenase genes and [NiFe]-hydrogenase genes from a pH-neutral Finnish fen soil