Project description:To dissect the gene regulatory networks operating during Scarlet Runner Bean seed development, we identified the binding sites genome-wide for transcription factor in Scarlet Runner Bean seeds during seed development using ChIP-seq
Project description:To understand the molecular basis for differences of common bean wild-type and mutant in sulphur amino acid content, transcripts were profiled at four developmental stages of seeds from wild-type SARC1 and major seed storage protein-deficient line SMARC1N-PN1 using a CustomArray 90K array. Microarray data confirmed that transcripts of storage and sulphur-rich proteins and sulphur-metabolism related genes were differentially expressed between the lines.
Project description:To understand the molecular basis for differences of common bean wild-type and mutant in sulphur amino acid content, transcripts were profiled at four developmental stages of seeds from wild-type SARC1 and major seed storage protein-deficient line SMARC1N-PN1 using a CustomArray 90K array. Microarray data confirmed that transcripts of storage and sulphur-rich proteins and sulphur-metabolism related genes were differentially expressed between the lines. The common bean (Phaseolus vulgaris) mutant line, SMARC1N-PN1 and its wild type, SARC1 used in the microarray experiment were grown in the field in London, ON, in 2009. Four developmental stages of seeds, based on fresh seed weight, were harvested. The stages of seeds used are Stage IV M-bM-^@M-^S cotyledon, 25 mg seed weight; Stage V M-bM-^@M-^S cotyledon, 50 mg seed weight; Stage VI M-bM-^@M-^S maturation, 150 mg seed weight, corresponding to the most active phase of reserve accumulation; and Stage VIII M-bM-^@M-^S maturation, 380 mg seed weight, corresponding to the onset of desiccation, were harvested for total RNA extraction. Four biological replicates for Stage IV and V and 3 biological replicates for Stage VI and VIII.
Project description:Gene expression profiles in soybean seeds at 4 developmental stages, pod, bean 2 mm, bean 5 mm, and full-sized bean, were examined by DNA microarray analysis. Total genes of each samples were classified into 4 clusters according to developmental stages. Differentially expressed genes (DEGs) were extracted by comparing their expression in two adjacent stages, by using the rank product method. To characterize the gene expression during seed development, DEGs were sorted into 8 clusters by the hclust function, according to gene expression patterns. Keywords: time course
Project description:Gene expression profiles in soybean seeds at 4 developmental stages, pod, bean 2 mm, bean 5 mm, and full-sized bean, were examined by DNA microarray analysis. Total genes of each samples were classified into 4 clusters according to developmental stages. Differentially expressed genes (DEGs) were extracted by comparing their expression in two adjacent stages, by using the rank product method. To characterize the gene expression during seed development, DEGs were sorted into 8 clusters by the hclust function, according to gene expression patterns. Keywords: time course Soybean seeds were selected at successive stages of early development for RNA extraction and hybridization on Affymetrix microarrays. We sought to obtain transitional changes in gene expression during seed develpment.
Project description:Synthetic lethality is a type of genetic interaction in which two non-lethal mutations acting together result in a loss of viability. Such interactions are important for the insights they may offer into how gene functions are organized into distinct cellular processes. The datasets in this Series represent an effort to identify synthetic lethal genetic interactions in the yeast Saccharomyces cerevisiae on a genome-wide scale.
Project description:Synthetic lethality is a type of genetic interaction in which two non-lethal mutations acting together result in a loss of viability. Such interactions are important for the insights they may offer into how gene functions are organized into distinct cellular processes. The datasets in this Series represent an effort to identify synthetic lethal genetic interactions in the yeast Saccharomyces cerevisiae on a genome-wide scale. Please see the Pubmed IDs in the individual Sample annotations.
Project description:Dry bean (Phaseolus vulgaris L.) seeds are a rich source of dietary zinc, especially for people consuming plant-based diets. Within P. vulgaris there is at least two-fold variation in seed Zn concentration. Genetic studies have revealed seed Zn differences to be controlled by a single gene in two closely related navy bean genotypes, Albion and Voyager. In this study, these two genotypes were grown under controlled fertilization conditions and the Zn concentration of various plant parts were determined. The two genotypes had similar levels of Zn in their leaves and pods but Voyager had 52% more Zn in its seeds than Albion. RNA was sequence from developing pods of both genotypes. Transcriptome analysis of these genotypes identified 27,198 genes in the developing bean pods, representing 86% of the genes in the P. vulgaris genome (v 1.0 DOE-JGI and USDA-NIFA). Expression was detected in 18,438 genes. A relatively small number of genes (381) were differentially expressed between Albion and Voyager. Differentially expressed genes included three genes potentially involved in Zn transport, including zinc-regulated transporter, iron regulated transporter like (ZIP), zinc-induced facilitator (ZIF) and heavy metal associated (HMA) family genes. In addition 12,118 SNPs were identified between the two genotypes. Of the gene families related to Zn and/or Fe transport, eleven genes were found to contain SNPs between Albion and Voyager.
Project description:Many genes involve in pathogenicity and virulence are induced only in plant or in the presence of host components. Bean leaf extract was obtained from healthy bean leaves. In this work we investigated the effect of bean leaf extract on the transcriptomic profile of the bacterium, when grown at low temperature in minimal medium with or without extract from healthy bean leaves.