Project description:Shotgun genome sequencing of 4 ancient cave bears (Ursus spelaeus complex), 1 ancient brown bear and 3 modern brown bears (Ursus arctos)
Project description:In this study, we evaluated the common proteomic profile, as well as, the exclusively deregulated proteins in ON cells from healthy controls cannabis users (HC/c), SCZ patients non-cannabis users (SCZ/nc) and SCZ patients cannabis users (SCZ/c) as compared to healthy controls non-cannabis users (HC/nc). Moreover, we investigated quantitative and functional differences between HC/c and SCZ, and we characterized the distinct effect of cannabis in SCZ comparing SCZ/nc and SCZ/c.
Project description:Regulatory changes are broadly accepted as key drivers of phenotypic divergence. However, identifying regulatory changes that underlie human-specific traits has proven very challenging. Here, we use 63 DNA methylation maps of ancient and present-day humans, as well as of six chimpanzees, to detect differentially methylated regions that emerged in modern humans after the split from Neanderthals and Denisovans. We show that genes affecting the face and vocal tract went through particularly extensive methylation changes. Specifically, we identify widespread hypermethylation in a network of face- and voice-affecting genes (SOX9, ACAN, COL2A1, NFIX and XYLT1). We propose that these repression patterns appeared after the split from Neanderthals and Denisovans, and that they might have played a key role in shaping the modern human face and vocal tract
Project description:Natural history museum specimens of historical honeybees have been successfully used to explore the genomic past of the honeybee, indicating fast and rapid changes between historical and modern specimens, possibly as a response to current challenges. In our study we explore a potential untapped archive from natural history collections - specimens of beeswax. We examine an Apis mellifera mellifera queen cell specimen from the 19th century. The intact and closed cell was analysed by X-ray Computed Tomography (CT) to reveal a perfectly preserved queen bee inside her cell. Subsequently, a micro-destructive approach was used to evaluate the possibility of protein extraction from the cell. Our results show that studies on specimens such as these provide valuable information about the past rearing of queens, their diet and development, which is relevant for understanding current honeybee behaviour. In addition we evaluate the feasibility of using historical beeswax as a biomolecular archive for ancient proteins to study honeybees.
Project description:The Neanderthal and Denisovan genomes enabled the discovery of sequences that differ between modern and archaic humans, the majority of which are noncoding. However, our understanding of the regulatory consequences of these differences remains limited, in part due to the decay of regulatory marks in ancient samples. Here, we used a massively parallel reporter assay in embryonic stem cells, neural progenitor cells and bone osteoblasts to investigate the regulatory effects of the 14,042 single-nucleotide modern human-specific variants. Overall, 1,791 (13%) of sequences containing these variants showed active regulatory activity, and 407 (23%) of these drove differential expression between human groups. Differentially active sequences were associated with divergent transcription factor binding motifs, and with genes enriched for vocal tract and brain anatomy and function. This work provides insight into the regulatory function of variants that emerged along the modern human lineage and the recent evolution of human gene expression.