Project description:DNA was extracted from two ash tree samples, one tolerant and one susceptible to ash dieback. The DNA was sequenced using Nanopore technologies and the methylation was called against the new genome (BioProject PRJNA865134, SAMN30100368, genome JANJPF000000000 ) to identify differentially methylated regions between both samples. Manuscript title: Fraxinus excelsior updated long-read genome reveals the importance of MADS-box genes in tolerance mechanisms against ash dieback, G3:Genes|Genomes|Genetics
Project description:ASH-1 orthologs are H3K36-specific methyltransferases that are conserved from fungi to humans but are poorly understood, in part because they are typically essential for viability. Here we examine the H3K36 methylation pathway of Neurospora crassa, which we find has just two H3K36 methyltransferases, ASH-1 and RNA polymerase II-associated SET-2. Our investigation of the interplay between SET-2 and ASH-1 uncovered a regulatory mechanism connecting ASH-1-catalyzed H3K36 methylation to repression of poorly transcribed genes. Our findings provide new insight into ASH-1 function, H3K27me2/3 establishment, and repression at facultative heterochromatin.
Project description:This SuperSeries is composed of the SubSeries listed below. Manuscript title: Fraxinus excelsior updated long-read genome reveals the importance of MADS-box genes in tolerance mechanisms against ash dieback, G3:Genes|Genomes|Genetics