Project description:Parascedosporium putredinis NO1 was grown for 4 days on six lignocellulosic substrates: Kraft Lignin (LI), Sugar Cane Bagasse (SC), Rice Straw (RS), Wheat Straw (WS), Wheat Bran (WB), and Empty Fruit Bunches from Palm Oil (EF). Proteins were harvested from the culture supernatant and from the insoluble fraction using a biotin-labelling approach to target the proteins bound to the lignocellulosic substrates.
Project description:Lignocellulose, the structural component of plant cells, is a major agricultural by-product and the most abundant terrestrial source of biopolymers on Earth. The complex and insoluble nature of lignocellulose limits its conversion into value-added commodities and, currently, efficient transformation requires expensive pre-treatments and high loadings of enzymes. Here we report on lignocellulolytic enzyme discovery from Parascedosporium putredinis NO1 during its deconstruction of wheat straw probing both the cultural supernatant and selecting for proteins bound to insoluble component of the growth culture.
Project description:Alistipes putredinis can alleviate DSS-induced colitis in mice, but the mechanism is unknown. The aim of this study was to examine the changes in gene expression in the intestinal tissue of mice with colitis following treatment with Alistipes putredinis by RNA sequencing.
Project description:Parascedosporium putredinis NO1 is a plant biomass-degrading ascomycete with a propensity to target the most recalcitrant components of lignocellulose. Here we applied proteomics and activity-based protein profiling (ABPP) to investigate the ability of P. putredinis NO1 to tailor its secretome for growth on different lignocellulosic substrates. Proteomic analysis of soluble and insoluble culture fractions following the growth of P. putredinis NO1 on six lignocellulosic substrates highlights the adaptability of the response of the P. putredinis NO1 secretome to different substrates. Differences in protein abundance profiles were maintained and observed across substrates after bioinformatic filtering of the data to remove intracellular protein contamination to identify the components of the secretome more accurately. These differences across substrates extended to carbohydrate-active enzymes (CAZymes) at both class and family levels. Investigation of abundant activities in the secretomes for each substrate revealed similar variation but also a high abundance of "unknown" proteins in all conditions investigated. Fluorescence-based and chemical proteomic ABPP of secreted cellulases, xylanases, and β-glucosidases applied to secretomes from multiple growth substrates for the first time confirmed highly adaptive time- and substrate-dependent glycoside hydrolase production by this fungus. P. putredinis NO1 is a promising new candidate for the identification of enzymes suited to the degradation of recalcitrant lignocellulosic feedstocks. The investigation of proteomes from the biomass bound and culture supernatant fractions provides a more complete picture of a fungal lignocellulose-degrading response. An in-depth understanding of this varied response will enhance efforts toward the development of tailored enzyme systems for use in biorefining.IMPORTANCEThe ability of the lignocellulose-degrading fungus Parascedosporium putredinis NO1 to tailor its secreted enzymes to different sources of plant biomass was revealed here. Through a combination of proteomic, bioinformatic, and fluorescent labeling techniques, remarkable variation was demonstrated in the secreted enzyme response for this ascomycete when grown on multiple lignocellulosic substrates. The maintenance of this variation over time when exploring hydrolytic polysaccharide-active enzymes through fluorescent labeling, suggests that this variation results from an actively tailored secretome response based on substrate. Understanding the tailored secretomes of wood-degrading fungi, especially from underexplored and poorly represented families, will be important for the development of effective substrate-tailored treatments for the conversion and valorization of lignocellulose.