Project description:Eucalyptus urophylla is a commercially important wood crop plantation species due to its rapid growth, biomass yield, and use as bioenergy feedstock. We characterized the genetic diversity and population structure of 332 E. urophylla individuals from 19 geographically defined E. urophylla populations with a reliability of 14,468 single nucleotide polymorphisms (SNPs). We compared the patterns of genetic variation among these 19 populations. High levels of genetic diversity were observed throughout the 19 E. urophylla populations based on genome-wide SNP data (HE=0.2677 to 0.3487). Analysis with STRUCTURE software, Principal component analysis (PCA) and a neighbor-joining (NJ) tree indicated that E. urophylla populations could be divided into three groups, and moderate and weak population structure was observed with pairwise genetic differentiation (FST) values ranging from −0.09 to 0.074. The low genetic diversity and shallow genetic differentiation found within the 19 populations may be a consequence of their pollination system and seed dispersal mechanism. In addition, 55 core germplasms of E. urophylla were constructed according to the genetic marker data. The genome-wide SNPs we identified will provide a valuable resource for further genetic improvement and effective use of the germplasm resources.
Project description:LC-MS/MS DDA data acquired from the lichen collection of Korean Lichen Research Institute ran by Prof. Jae-Seoun Hur (Sunchon National University)
Project description:Global climate changes on one aspect of extreme temperature records would suddenly reset environmental growth conditions for field-grown crops, which severely affects agronomic and commercial traits. Taking the cold-season preferable crop rapeseed Brassica napus L. for example, low-temperature shocks change endogenous regulatory networks and cause phenotypic damages during most lifespan. Here we screened out two genetic breeding elites with different temperature-dependent germination rates, core germplasms with good germination performance and genetic loci and candidate genes potentially involved in low-temperature tolerant functions for the pre-breeding purpose of cold-tolerant germination. By using the phenotype of the germination index of 273 core germplasms under normal temperature and 10 transcriptomic datasets of cold-tolerant Jia You (JY) 1621 and cold-sensitive JY1605 elite cultivars on three timepoints during germination process, we successfully identified clustered genes of early and late temperature response germination (ETRG and LTRG) genes and several cold-tolerant (CDT) and temperature-insensitive (TPI) candidate regulators. This study performed comprehensive multi-omics research on potential cold-responsive genes for the rapeseed improvement of cold tolerance germination.