Project description:Eucalyptus urophylla is a commercially important wood crop plantation species due to its rapid growth, biomass yield, and use as bioenergy feedstock. We characterized the genetic diversity and population structure of 332 E. urophylla individuals from 19 geographically defined E. urophylla populations with a reliability of 14,468 single nucleotide polymorphisms (SNPs). We compared the patterns of genetic variation among these 19 populations. High levels of genetic diversity were observed throughout the 19 E. urophylla populations based on genome-wide SNP data (HE=0.2677 to 0.3487). Analysis with STRUCTURE software, Principal component analysis (PCA) and a neighbor-joining (NJ) tree indicated that E. urophylla populations could be divided into three groups, and moderate and weak population structure was observed with pairwise genetic differentiation (FST) values ranging from −0.09 to 0.074. The low genetic diversity and shallow genetic differentiation found within the 19 populations may be a consequence of their pollination system and seed dispersal mechanism. In addition, 55 core germplasms of E. urophylla were constructed according to the genetic marker data. The genome-wide SNPs we identified will provide a valuable resource for further genetic improvement and effective use of the germplasm resources.
2023-01-31 | GSE145072 | GEO
Project description:Flax core collection
| PRJNA707038 | ENA
Project description:Idenfication of SNPs in Korean cowpea germplasm
Project description:LC-MS/MS DDA data acquired from the lichen collection of Korean Lichen Research Institute ran by Prof. Jae-Seoun Hur (Sunchon National University)
Project description:Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently have moderately significant number of ESTs has been released into the public domain. Utilization of these ESTs for the oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. We have developed a high-density oligonucleotide microarray for peanut using approximately 47,767 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and investigate the utility of this array, we compared transcript levels in pod to peg, leaf, stem, and root tissues. Results from this experiment showed a number of putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to either peg, leaf, or stem. Keywords: Peanut tissue-specific gene expression We used Agilent peanut gene chips (017430) to identify putative tissue-specific genes and investigate the utility of the array for expression profiling of various peanut tissues. Pod, leaf, stem, peg and root tissues of the peanut genotype Flavrunner 458 were used in the study. Field grown plants under normal irrigation were used for sample collection. Three replications of microarray experiments were carried out by hybridizing the cRNA from pod tissue and cRNA from leaf, stem, peg and root tissues on the same dual color oligonucleotide arrays.