Project description:To investigate the evolution of cold response in Pooideae, five species spanning early to later diverging lineages were sampled before and after subjecting them to a drop in temperature (17C to 6C), shorter days (12 to 8 hours of light) and less intensive light. Short-term response was sampled in the afternoon 8 hours after drop in temperature but 24 hours after the respective control sample to control for diurnal rhythm. Long-term response was sampled after 4 and 9 weeks in the morning directly after lights were turned on with a respective control sample also taken in the morning on the day before the temperature drop.
Project description:Mounting evidence suggests that terrestrialization of plants started in streptophyte green algae, favoured by their dual existence in freshwater and subaerial/terrestrial environments. Here, we present the genomes of Mesostigma viride and Chlorokybus atmophyticus, two sister taxa in the earliest-diverging clade of streptophyte algae dwelling in freshwater and subaerial/terrestrial environments, respectively. We provide evidence that the common ancestor of M. viride and C. atmophyticus (and thus of streptophytes) had already developed traits associated with a subaerial/terrestrial environment, such as embryophyte-type photorespiration, canonical plant phytochrome, several phytohormones and transcription factors involved in responses to environmental stresses, and evolution of cellulose synthase and cellulose synthase-like genes characteristic of embryophytes. Both genomes differed markedly in genome size and structure, and in gene family composition, revealing their dynamic nature, presumably in response to adaptations to their contrasting environments. The ancestor of M. viride possibly lost several genomic traits associated with a subaerial/terrestrial environment following transition to a freshwater habitat.
Project description:Prokaryotic genome annotation is highly dependent on automated methods, as manual curation cannot keep up with the exponential growth of sequenced genomes. Current automated techniques depend heavily on sequence context and often underestimate the complexity of the proteome. We developed REPARATION (RibosomeE Profiling Assisted (Re-)AnnotaTION), a de novo algorithm that takes advantage of experimental evidence from ribosome profiling (Ribo-seq) to delineate translated open reading frames (ORFs) in bacteria, independent of genome annotation. Ribo-seq next generation sequencing technique that provides a genome-wide snapshot of the position translating ribosome along an mRNA at the time of the experiment. REPARATION evaluates all possible ORFs in the genome and estimates minimum thresholds to screen for spurious ORFs based on a growth curve model. We applied REPARATION to three annotated bacterial species to obtain a more comprehensive mapping of their translation landscape in support of experimental data. In all cases, we identified hundreds of novel ORFs including variants of previously annotated and novel small ORFs (<71 codons). Our predictions were supported by matching mass spectrometry (MS) proteomics data and sequence conservation analysis. REPARATION is unique in that it makes use of experimental Ribo-seq data to perform de novo ORF delineation in bacterial genomes, and thus can identify putative coding ORFs irrespective of the sequence context of the reading frame.
Project description:The delineation of genes in bacteria has remained an important challenge because prokaryotic genomes are often tightly packed frequently resulting in overlapping genes. We hereby present a de novo approach called REPARATION (RibosomeE Profiling Assisted (Re-)AnnotaTION) to delineate translated open reading frames (ORFs) in bacteria independent of (available) genome annotation. By deep sequencing of ribosome protected mRNA fragments (RPF) to map translating ribosomes across the entire genome, REPARATION takes advantage of the recently developed ribosome profiling (Ribo-seq) technique. REPARATION starts by traversing the entire genome to generate all possible ORFs and then collects their corresponding RPF signal information. Based on a growth curve model to estimate minimum ORF read density and Ribo-seq RPF coverage, thresholds indicative of translation is estimated. Finally, our algorithm applies a random forest model to build a classifier to classify putative protein coding ORFs. We evaluated the performance of REPARATION on 3 annotated bacterial species using in-house generated Ribo-seq data and matching N-terminal and shotgun proteomics data next to publically available Ribo-seq data. In all cases, about 80% of the ORFs predicted by REPARATION were previously annotated as protein coding. While 13-20% were variants of previously annotated ORFs and about 3-4% point to novel translated ORFs within intergenic or other regions previously annotated as non-coding. Without stringent length restrictions REPARATION was able to identify several small ORFs (sORFs). Multiple supportive evidence from matching MS data and sequence conservation analysis was obtained to validate predicted ORFs.
Project description:We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 26 maize inbreds that serve as the founders for the maize nested association mapping population. The data indicate that the number of pan-genes in maize exceeds 103,000 and that the ancient tetraploid character of maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat arrays and complete annotation of centromeres further revealed the locations and internal structures of major cytological landmarks. We show that combining structural variation with SNPs can improve the power of quantitative mapping studies. Finally, we document variation at the level of DNA methylation, and demonstrate that unmethylated regions are enriched for cis-regulatory elements that correlate with known QTLs and changes in gene expression.