Project description:We used the nanopore Cas9 targeted sequencing (nCATS) strategy to specifically sequence 125 L1HS-containing loci in parallel and measure their DNA methylation levels using nanopore long-read sequencing. Each targeted locus is sequenced at high coverage (~45X) with unambiguously mapped reads spanning the entire L1 element, as well as its flanking sequences over several kilobases. The genome-wide profile of L1 methylation was also assessed by bs-ATLAS-seq in the same cell lines (E-MTAB-10895).
Project description:Genomic DNA from 55 wild type Col x Ler F2 individuals was extracted using the CTAB method. Equal amounts of DNA from these 55 plants were pooled into two groups (pool 1 = 4 plants; pool 2 = 51 plants), and nine micrograms of gDNA from each pool was used to generate Nanopore sequencing libraries with the Ligation Sequencing Kit V14 (Nanopore, SQK-LSK114). The libraries were sequenced independently using PromethION (BGI, Hong Kong).
Project description:This dataset contains Xdrop followed by oxford nanopore long read sequencing performed in target tRNA gene deletion (t8) and intergenic region deletion (i50) clones in HepG2 . By applying de novo assembly based approach to Xdrop-LRS data, we identified Cas9-induced on-target genomic alteration.
Project description:The Oxford Nanopore technology has a great potential for the analysis of genome methylation, including full-genome methylome profiling. However, there are certain issues while identifying methylation motif sequences caused by low sensitivity of the currently available motif enrichment algorithms. Here, we present Snapper, a new highly-sensitive approach to extract methylation motif sequences based on a greedy motif selection algorithm. Snapper has shown higher enrichment sensitivity compared with the MEME tool coupled with Tombo or Nanodisco instruments, which was demonstrated on H. pylori strain J99 studied earlier using the PacBio technology. In addition, we used Snapper to characterize the total methylome of a new H.pylori strain A45. The analysis revealed the presence of at least 4 methylation sites that have not been described for H. pylori earlier. We experimentally confirmed a new CCAG-specific methyltransferase and indirectly inferred a new CCAAK-specific methyltransferase.