Project description:Bulk ATAC-seq performed on whole adult brains across multiple homozigous fly lines (DGRP) in order to find caQTLs. Young adults (1-3 days) were used for all genotypes.
Project description:We performed mRNA sequencing of reciprocal F1 female hybrids from two crosses (362/765 and 517/765) and the parental DGRP lines (362, 517 and 765). Specifically, we aimed to identify whether transcripts predicted to be regulated by cis-eQTLs exhibit a significant allele-specific bias in gene expression. Since both alleles act in the cross in the same trans environment, differential expression in the F1 is a direct measure of cis-regulatory activity.
Project description:DGRP lines were raised at 18 degree celsius, adult mated whole fly expression was estimated using microarrays. The same design was previous used to measure expression at 25 degree celsius (E-MTAB-3216).
Project description:To explore the effects of the housing condition (group- or single-housing) on killifish, we performed RNA-seq analysis for the whole bodies of male and female juveniles, gonads of males and females from puberty to middle age, and livers of young and old males.
Project description:To explore the effects of the housing condition (group- or single-housing) on killifish, we performed RNA-seq analysis for the whole bodies of male and female juveniles, gonads of males and females from puberty to middle age, and livers of young and old males.
Project description:Adolescence is a critical period in cognitive and emotional development, characterized by high levels of social interaction and increases in risk-taking behavior including binge drinking. Adolescent exposure to social stress and binge ethanol have individually been associated with the development of social, emotional, and cognitive deficits, as well as increased risk for alcohol use disorder. Disruption of cortical development by early life social stress and/or binge drinking may partly underlie these enduring emotional, cognitive, and behavioral effects. The study goal is to implement a novel neighbor housing environment to identify the effects of adolescent neighbor housing and/or binge ethanol drinking on (1) a battery of emotional and cognitive tasks (2) adult ethanol drinking behavior, and (3) the nucleus accumbens and prefrontal cortex transcriptome. Adolescent male and female C57BL/6J mice were single or neighbor housed with or without access to intermittent ethanol. One cohort underwent behavioral testing during adulthood to determine social preference, expression of anxiety-like behavior, cognitive performance, and patterns of ethanol intake. The second cohort was sacrificed in late adolescence and brain tissue was used for transcriptomics analysis. As adults, single housed mice displayed decreased social interaction, deficits in the novel object recognition task, and increased anxiety-like behavior, relative to neighbor-housed mice. There was no effect of housing condition on adolescent or adult ethanol consumption. Adolescent ethanol exposure did not alter adult ethanol intake. Transcriptomics analysis revealed that adolescent housing condition and ethanol exposure resulted in differential expression of genes related to synaptic plasticity in the nucleus accumbens and genes related to methylation, the extracellular matrix and inflammation in the prefrontal cortex. The behavioral results indicate that social interaction during adolescence via the neighbor housing model may protect against emotional, social, and cognitive deficits. In addition, the transcriptomics results suggest that these behavioral alterations may be mediated in part by dysregulation of transcription in the frontal cortex or the nucleus accumbens
Project description:We performed RNA sequencing of wing discs at the wandering L3 larval stage from 32 inbred lines of Drosophila genetic reference panel (DGRP) that consists of 16 big and 16 small wing lines. We aimed to understand system-wide gene regulatory mechanisms that attain the observed natural variation in wing size including the sexual size dimorphism.
Project description:Purpose: To identify the impact of thermoneutral housing as opposed to standard housing on gene expression profiles in the mouse peripheral blood mononuclear cells (PBMCs), focusing on proinflammatory immune responses and high-fat diet induced non-alcoholic fatty liver disease pathogenesis. Methods: Expression profiles from PBMCs collected from C57Bl6 mice fed chow or high-fat diet for 8 weeks, following 2 weeks at either standard or thermoneutral housing conditions. Sequencing was performed in duplicate, the Illumina HiSeq 2500. Transcripts that passed quality filters were analyzed at the gene level, using Strand NGS for accurate alignment and quantification. Results: We mapped approximately 20million reads per sample to the mm10 genome using annotations produced by Ensembl, which represented 36186 transcripts. Approximately 14000 genes exhibited reasonable expression in at least one experimental condition. The primary focus was the effect of housing temperature while holding diet consistent (i.e. thermoneutral vs standard, both on high-rat diet), where ~2700 genes exhibited differential regulation. Conclusions: We present the transcriptomic profile of PBMCs from mice fed chow of high-fat diets, following either standard or thermoneutral housing. We obseve an augmented proinflammatory immune response.