Project description:These samples are part of an experiment comparing the expression profiles of Francisella tularensis novicida grown in chemically defined medium and bacteria isolated 24 hours post infection of J774 macrophages to identify virulence factors
Project description:To understand differences of gene expression profiles between Francisella strains RNA profiles of Francisella strains were generated by deep sequencing, in triplicate, using NovaSeq6000. qRT–PCR validation was performed using SYBR Green assays. Our study represents the first detailed differential transcriptomic analysis of Francisella strains , with biologic replicates, generated by RNA-seq technology.
Project description:These samples are part of an experiment comparing the expression profiles of Francisella tularensis novicida grown in chemically defined medium and bacteria isolated 24 hours post infection of J774 macrophages to identify virulence factors Custom microarray submitted previously was used as the platform (GPL20119). The samples submitted here were compared with samples submitted previously (GSM1673555-57 in GSE68478) and differentially expressed genes during the intra-macrophage growth were identified.
Project description:In many bacteria, the ability to modulate biofilm production relies on specific signaling molecules that are either self-produced or made by neighboring microbes within the ecological niche. We analyzed the potential interspecies signaling effect of the Burkholderia diffusible signal factor (BDSF) on Francisella novicida, a model organism for Francisella tularensis, and demon- strated that BDSF both inhibits the formation and causes the dispersion of Francisella biofilm. Specificity was demonstrated for the cis versus the trans form of BDSF. Using transcriptome sequencing, quantitative reverse transcription-PCR, and activity as- says, we found that BDSF altered the expression of many F. novicida genes, including genes involved in biofilm formation, such as chitinases. Using a chitinase inhibitor, the antibiofilm activity of BDSF was also shown to be chitinase dependent. In addition, BDSF caused an increase in RelA expression and increased levels of (p)ppGpp, leading to decreased biofilm production. These results support our observation that exposure of F. novicida to BDSF causes biofilm dispersal. Furthermore, BDSF upregulated the genes involved in iron acquisition (figABCD), increasing siderophore production. Thus, this study provides the first evidence for a potential role and mechanism of diffusible signal factor (DSF) signaling in the genus Francisella and suggests the possibility of interspecies signaling between Francisella and other bacteria. Overall, this study suggests that in response to the interspecies DSF signal, F. novicida can alter its gene expression and regulate its biofilm formation.