Project description:The microbiome plays a significant role in gut brain communication and is linked to several animal and human diseases. Hypertension is characterized by gut dysbiosis, and this study aimed to determine how the gut microbiome differed between male and female normotensive and hypertensive rodents. WKY is a genetic control for spontaneous hypertensive rats or SHR which is well documented to have elevated blood pressure at approximately 8 to 10 weeks. We compared the microbiome of normotensive and hypertensive rodents using a meta-genomics approach.
Project description:Relentless mining operations have destroyed our environment significantly. Soil inhabiting microbes play a significant role in ecological restoration of these areas. Microbial weathering processes like chemical dissolution of rocks significantly promotes the soil properties and enhances the rock to soil ratio respectively. Earlier studies have reported that bacteria exhibit efficient rock-dissolution abilities by releasing organic acids and other chemical elements from the silicate rocks. However, rock-dissolving mechanisms of the bacterium remain to be unclear till date. Thus, we have performed rock-dissolution experiments followed by genome and transcriptome sequencing of novel Pseudomonas sp.NLX-4 strain to explore the efficiency of microbe-mediated habitat restoration and its molecular mechanisms underlying this biological process. Results obtained from initial rock dissolution experiments revealed that Pseudomonas sp. NLX-4 strain efficiently accelerates the dissolution of silicate rocks by secreting amino acids, exopolysaccharides, and organic acids with elevated concentrations of potassium, silicon and aluminium elements. The rock dissolution experiments of NLX-4 strain exhibited an initial increase in particle diameter variation values between 0-15 days and decline after 15 days-time respectively. The 6,771,445-base pair NLX-4 genome exhibited 63.21 GC percentage respectively with a total of 6041 protein coding genes. Genome wide annotations of NLX-4 strain exhibits 5045-COG, 3996-GO, 5342-InterPro, 4386-KEGG proteins respectively Transcriptome analysis of NLX-4 cultured with/without silicate rocks resulted in 539 (288-up and 251-down) differentially expressed genes (DEGs). Fifteen DEGs encoding for siderophore transport, EPS and amino acids synthesis, organic acids metabolism, and bacterial resistance to adverse environmental conditions were highly up-regulated by cultured with silicate rocks. This study has not only provided a new strategy for the ecological restoration of rock mining areas, but also enriched the applicable bacterial and genetic resources.
Project description:Tire-wear particles (TWPs) are considered among the largest contributors of microplastics to the environment. They are subject to break-down due to environmental weathering, which allows for potentially toxic chemicals to be leached from and sorbed onto the particles. In this study, leachate generated from “weathered” and “un-weathered” TWPs were used for sublethal toxicity tests with Americamysis bahia.
2025-01-01 | GSE223584 | GEO
Project description:Sulfuriferula isolates from weathered sulfide-bearing rock
Project description:A majority of emerging infectious diseases are of zoonotic origin. Metagenomic Next-Generation Sequencing (mNGS) has been employed to identify uncommon and novel infectious etiologies and characterize virus diversity in human, animal, and environmental samples. Here, we systematically reviewed studies that performed viral mNGS in common livestock (cattle, small ruminants, poultry, and pigs). We identified 2481 records and 120 records were ultimately included after a first and second screening. Pigs were the most frequently studied livestock and the virus diversity found in samples from poultry was the highest. Known animal viruses, zoonotic viruses, and novel viruses were reported in available literature, demonstrating the capacity of mNGS to identify both known and novel viruses. However, the coverage of metagenomic studies was patchy, with few data on the virome of small ruminants and respiratory virome of studied livestock. Essential metadata such as age of livestock and farm types were rarely mentioned in available literature, and only 10.8% of the datasets were publicly available. Developing a deeper understanding of livestock virome is crucial for detection of potential zoonotic and animal pathogens and One Health preparedness. Metagenomic studies can provide this background but only when combined with essential metadata and following the "FAIR" (Findable, Accessible, Interoperable, and Reusable) data principles.