Project description:Using Multiome and previously published sc/snRNA-seq data, we studied eight anatomical regions of the human heart including left and right ventricular free walls (LV and RV), left and right atria (LA and RA), left ventricular apex (AX), interventricular septum (SP), sino-atrial node (SAN) and atrioventricular node (AVN). For the first time, we profile the cells of the human cardiac conduction system, revealing their distinctive repertoire of ion channels, G-protein coupled receptors and cell-cell interactions. We map the identified cells to spatial transcriptomic data to discover cellular niches within the eight regions of the heart.
Project description:Using Multiome and previously published sc/snRNA-seq data, we studied eight anatomical regions of the human heart including left and right ventricular free walls (LV and RV), left and right atria (LA and RA), left ventricular apex (AX), interventricular septum (SP), sino-atrial node (SAN) and atrioventricular node (AVN). For the first time, we profile the cells of the human cardiac conduction system, revealing their distinctive repertoire of ion channels, G-protein coupled receptors and cell-cell interactions. We map the identified cells to spatial transcriptomic data to discover cellular niches within the eight regions of the heart.
Project description:Using Multiome and previously published sc/snRNA-seq data, we studied eight anatomical regions of the human heart including left and right ventricular free walls (LV and RV), left and right atria (LA and RA), left ventricular apex (AX), interventricular septum (SP), sino-atrial node (SAN) and atrioventricular node (AVN). For the first time, we profile the cells of the human cardiac conduction system, revealing their distinctive repertoire of ion channels, G-protein coupled receptors and cell-cell interactions. We map the identified cells to spatial transcriptomic data to discover cellular niches within the eight regions of the heart.
Project description:These samples are part of a study to provide a spatially resolved single-cell multiomics map of human trophoblast differentiation in early pregnancy. Here we profiled human implantation sites, decidual and placental samples from 6-9 PCW by 10x multiome snRNA-seq/snATAC-seq.
Project description:The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.
Project description:We performed multiomics analysis; single nucleus RNA-seq (snRNA-seq) combined with ATAC (snATAC-seq) with 10XGenomics Multiome platform to generate cell-type-specific gene expression and chromatin accessibility atlas of the mouse polycystic kidney disease on a time course.