Project description:Two distinct and anatomically restricted modes of ossification, which are endochondral ossification and intramembranous ossification, govern osteogenesis and joint formation throughout the human skeleton and, to our knowledge, the cellular bases by which they form and mature remain incompletely described in human development at single-cell resolution. To address this, we apply single-nuclei paired RNA and ATAC sequencing to decipher the molecular gene regulatory programmes that mediate maturation of the distinct bone and joint-forming niches in the cranium and appendicular skeleton across space and time from 5-11 PCW.
Project description:Using Multiome and previously published sc/snRNA-seq data, we studied eight anatomical regions of the human heart including left and right ventricular free walls (LV and RV), left and right atria (LA and RA), left ventricular apex (AX), interventricular septum (SP), sino-atrial node (SAN) and atrioventricular node (AVN). For the first time, we profile the cells of the human cardiac conduction system, revealing their distinctive repertoire of ion channels, G-protein coupled receptors and cell-cell interactions. We map the identified cells to spatial transcriptomic data to discover cellular niches within the eight regions of the heart.