Project description:In this study we applied RNA-sequencing to a set of larvae-challenged elm trees that had either been untreated before or been exposed to prior egg deposition by elm leaf beetles. This dataset allowed us to characterize the global transcriptional response of egg-primed and non-primed elm trees at different time points after the priming stimulus itself and after the onset of larval feeding.
Project description:Quantitative analysis of the sequence determinants of transcription and translation regulation is of special relevance for systems and synthetic biology applications. Here, we developed a novel generic approach for the fast and efficient analysis of these determinants in vivo. ELM-seq (expression level monitoring by DNA methylation) uses Dam coupled to high-throughput sequencing) as a reporter that can be detected by DNA-seq. We used the genome-reduced bacterium Mycoplasma pneumoniae to show that it is a quantitative reporter. We showed that the methylase activity correlates with protein expression, does not affect cell viability, and has a large dynamic range (~10,000-fold). We applied ELM-seq to randomized libraries of promoters or 5’ untranslated regions. We found that transcription is greatly influenced by the bases around the +1 of the transcript and the Pribnow box, and we also identified several epistatic interactions (including the +1 and the “extended Pribnow”). Regarding translation initiation, we confirmed that the Shine-Dalgarno motif is not relevant, but instead, that RNA secondary structure is the main governing factor. With this in hand, we developed a predictor to help tailor gene expression in M. pneumoniae. The simple ELM-seq methodology will allow identifying and optimizing key sequence determinants for promoter strength and translation. The ELM-seq methodology allows both researchers and companies to identify and optimize in an easy and comprehensive manner, key sequence determinants for promoter strength and translation.