Project description:Bartonelloses are neglected emerging infectious diseases caused by facultatively intracellular bacteria transmitted between vertebrate hosts by various arthropod vectors. The highest diversity of Bartonella species has been identified in rodents. Within this study we focused on the edible dormouse (Glis glis), a rodent with unique life-history traits that often enters households and whose possible role in the epidemiology of Bartonella infections had been previously unknown. We identified and cultivated two distinct Bartonella sub(species) significantly diverging from previously described species, which were characterized using growth characteristics, biochemical tests, and various molecular techniques including also proteomics. Two novel (sub)species were described: Bartonella grahamii subsp. shimonis subsp. nov. and Bartonella gliris sp. nov.We sequenced two individual strains per each described (sub)species. During exploratory genomic analyses comparing two genotypes ultimately belonging to the same species, both factually and most importantly even spatiotemporally, we noticed unexpectedly significant structural variation between them. We found that most of the detected structural variants could be explained either by prophage excision or integration. Based on a detailed study of one such event, we argue that prophage deletion represents the most probable explanation of the observed phenomena.Moreover, in one strain of Bartonella grahamii subsp. shimonis subsp. nov. we identified a deletion related to Bartonella Adhesin A, a major pathogenicity factor that modulates bacteria-host interactions. Altogether, our results suggest that even a limited number of passages induced sufficient selective pressure to promote significant changes at the level of the genome.
Project description:Myeloid Angiogenic Cells (MACs) were infected with the intracellular, bacterial pathogen Bartonella henselae (B.h.). Infected cells were seeded onto Matrigel coated plates. While uninfected cells showed no phenotypic changes and died over time, infected cells showed strong phenotypic changes and developed into complex 2D chord networks over the course of long term culture (eg 49d). To examine the changes in gene expression associated with the development of the B.h.dependent chord formation phenotype, RNA was isolated from MACs shortly after isolation (d4) and from cells of the chord structures (+B.h. Matrigel). As primary endothelial cells are also know to form chord networks when cultured on Matrigel, a sample of human umbilical vein endothelial cells (HUVECs) cultured on Matrigel for 12hr was also included in the analysis as a control.
Project description:Myeloid Angiogenic Cells (MACs) were infected with the intracellular, bacterial pathogen Bartonella henselae (B.h.). Infected cells were seeded onto Matrigel coated plates. While uninfected cells showed no phenotypic changes and died over time, infected cells showed strong phenotypic changes and developed into complex 2D chord networks over the course of long term culture (eg 49d). To examine the changes in gene expression associated with the development of the B.h.dependent chord formation phenotype, RNA was isolated from MACs shortly after isolation (d4) and from cells of the chord structures (+B.h. Matrigel). As primary endothelial cells are also know to form chord networks when cultured on Matrigel, a sample of human umbilical vein endothelial cells (HUVECs) cultured on Matrigel for 12hr was also included in the analysis as a control. myeloid angiogenic cells (MACs) from three donors were compared d4 after isolation with MACs infected with Bartonella henselae and cultured on Matrigel coated plates for up to 49 days, 1 sample from human umbilical cord vein endothelial cells (HUVECs) cultured for 12hr on Matrigel coated plates were also included as a control.
Project description:Transcriptional profiling of Bartonella quintana grown on a plate at 28C and 37C for various time points. Comparing each individual sample in cy5 to a pooled mix of all samples in cy3 to preserve a common denominator.
Project description:Transfer RNA (tRNA) modifications play a crucial role in maintaining translational fidelity and efficiency, and they may function as regulatory elements in stress response and virulence. Despite their pivotal roles, a comprehensive mapping of tRNA modifications and their associated synthesis genes is still limited, with a predominant focus on free-living bacteria. In this study, we employed a multidisciplinary approach, incorporating comparative genomics, mass spectrometry, and next-generation sequencing, to predict the set of tRNA modification genes responsible for tRNA maturation in two intracellular pathogens—Bartonella henselae Houston I and Bartonella quintana Toulouse, which are causative agents of cat-scratch disease and trench fever, respectively. This analysis presented challenges, particularly because of host RNA contamination, which served as a potential source of error. However, our approach predicted 26 genes responsible for synthesizing 23 distinct tRNA modifications in B. henselae and 22 genes associated with 23 modifications in B. quintana. Notably, akin to other intracellular and symbiotic bacteria, both Bartonella species have undergone substantial reductions in tRNA modification genes, mostly by simplifying the hypermodifications present at positions 34 and 37. B. quintana exhibited the additional loss of four modifications and these were linked to examples of gene decay, providing snapshots of reductive evolution.