Project description:Human mesenchymal stem cells are a promising cell source for the treatment of stroke. Their primary mechanism of action occurs via neuroprotective effects by trophic factors, anti-inflammatory effects, and immunomodulation. However, the regeneration of damaged neuronal networks by cell transplantation remains still challenging. We hypothesized that cells induced to neural lineages would fit the niche, replace the lesion, and be more effective in improving symptoms compared with stem cells themselves. We investigated the characteristics of induced neural cells from human dental pulp tissue and compared the transplantation effects between these induced neural cells and uninduced dental pulp stem cells. Induced neural cells or dental pulp stem cells were intracerebrally transplanted 5 days after cerebral infarction induced by permanent middle cerebral artery occlusion in immunodeficient mice. Effects on functional recovery were also assessed through behavior testing. We used immunohistochemistry and neuron tracing to analyze the differentiation, axonal extension, and connectivity of transplanted cells to the host’s neural circuit. Transplantation of induced neural cells from human dental pulp ameliorated functional recovery after cerebral infarction compared with dental pulp stem cells. The induced neural cells comprised both neurons and glia and expressed functional voltage, and they were more related to neurogenesis in terms of transcriptomics. Induced neural cells had a higher viability than did dental pulp stem cells in hypoxic culture. We showed that induced neural cells from dental pulp tissue offer a novel therapeutic approach for recovery after cerebral infarction.
Project description:Dental pulp cells obtained from several donors proliferated actively in a serum-free medium STK2. The growth rate of dental pulp cells from most donors was higher in the serum-free medium than that in a medium containing 10% serum. DNA microarray analyses showed that gene expression profile of dental pulp cells grown in the serum-free medium was similar to that of cells grown in a medium containing 10% serum. However, several genes related to cell proliferation were up-regulated in dental pulp cells grown in the serum-free medium.
Project description:Wnt regulates various cell responses. In dental pulp cells, Wnt signaling control cell proliferation, apoptosis, migration and differentiation. Here, the differential gene expression of human dental pulp stem cells treated with Wnt ligands or Wnt agonist was examined using a high throughput RNA sequencing technique. Results demonstrated that Wnt ligands or Wnt agonist altered numerous gene expression in human dental pulp stem cells.
Project description:Non-syndromic cleft lip/palate (NSCL/P) is a complex, frequent congenital malformation, determined by the interplay between genetic and environmental factors during embryonic development. Previous findings have appointed an aetiological overlap between NSCL/P and cancer, and alterations in similar biological pathways may underpin both conditions. Here, using a combination of transcriptomic profiling and functional approaches, we report that NSCL/P dental pulp stem cells exhibit dysregulation of a co-expressed gene network mainly associated with DNA double-strand break repair and cell cycle control (p = 2.88x10-2 M-bM-^@M-^S 5.02x10-9). This network included important genes for these cellular processes, such as BRCA1, RAD51, and MSH2, which are predicted to be regulated by transcription factor E2F1. Functional assays support these findings, revealing that NSCL/P cells accumulate DNA double-strand breaks upon exposure to H2O2. Furthermore, we show that E2f1, Brca1 and Rad51 involved in DNA repair are co-expressed in the developing embryonic orofacial primordia, and may act as a molecular hub playing a role in lip and palate morphogenesis. In conclusion, we show that cellular defences against DNA damage may take part in the pathogenesis of NSCL/P, in accordance with the hypothesis of aetiological overlap between this malformation and cancer. These results provide more information regarding the aetiology of NSCL/P and have the potential tocan potentially assist incontribute to the development of future preventive strategies. In order to analyze differences in gene expression between NSCL/P samples and controls we used 7 NSCL/P RNA samples extracted from dental pulp stem cells cultures and 6 control RNA samples also from dental pulp stem cells cultures, all in the same culture conditions. RNA samples were used in gene expression microarrays (Affymetrix HuGene 1.0 st chips).
Project description:Human deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These differences are attributable to their genetic backgrounds. Therefore the purpose of this study is to compare the differences of dental pulp in deciduous and permanent teeth. Pulp samples were obtained from permanent premolars (n=6, aged 11-14 years) and deciduous teeth (n=6, aged 11-14 years). Comparative cDNA microarrary analysis revealed several differences in gene expression between the deciduous and permanent pulp tissues. Each GSM record represents a pulp sample pooled from two teeth samples.
Project description:It is well known that dental pulp tissue can evoke some of the most severe acute inflammation observed in the human body. We found that dental pulp cells secrete a factor that induces tumor necrosis factor-α production from macrophages, and designated this factor, dental pulp cell-derived tumor necrosis factor-α-inducing factor (DPTIF). DPTIF was induced in dental pulp cells and transported to recipient cells via microvesicles. Treatment of dental pulp cells with a PKR inhibitor markedly suppressed DPTIF activity, and weak interferon signals were constitutively activated inside the cells. In recipient macrophages, stimulation with DPTIF-containing supernatants from pulp cells resulted in activation of both nuclear factor-κB and MAP kinases like JNK and p38. Proteomics analyses revealed that many stress granule-related proteins were present in supernatants from dental pulp cells as well as microvesicle marker proteins like GAPDH, β-actin, HSPA8, HSPB1, HSPE1, and HSPD1. Furthermore, giant molecule AHNAK and PKR were detected in microvesicles derived from dental pulp cells, and gene silencing of AHNAK in pulp cells led to reduced DPTIF activity. Thus, it appeared that the core protein of DPTIF was PKR, and that PKR was maintained in an active state in stress granule aggregates with AHNAK and transported via microvesicles. The activity of DPTIF for TNF-α induction was far superior to that of gram-negative bacterial endotoxin. Therefore, we, report for the first time, that active PKR is transported via microvesicles as stress granule aggregates and induces powerful inflammatory signals in macrophages.
Project description:It is well known that dental pulp tissue can evoke some of the most severe acute inflammation observed in the human body. We found that dental pulp cells secrete a factor that induces tumor necrosis factor-α production from macrophages, and designated this factor, dental pulp cell-derived tumor necrosis factor-α-inducing factor (DPTIF). DPTIF was induced in dental pulp cells and transported to recipient cells via microvesicles. Treatment of dental pulp cells with a PKR inhibitor markedly suppressed DPTIF activity, and weak interferon signals were constitutively activated inside the cells. In recipient macrophages, stimulation with DPTIF-containing supernatants from pulp cells resulted in activation of both nuclear factor-κB and MAP kinases like JNK and p38. Proteomics analyses revealed that many stress granule-related proteins were present in supernatants from dental pulp cells as well as microvesicle marker proteins like GAPDH, β-actin, HSPA8, HSPB1, HSPE1, and HSPD1. Furthermore, giant molecule AHNAK and PKR were detected in microvesicles derived from dental pulp cells, and gene silencing of AHNAK in pulp cells led to reduced DPTIF activity. Thus, it appeared that the core protein of DPTIF was PKR, and that PKR was maintained in an active state in stress granule aggregates with AHNAK and transported via microvesicles. The activity of DPTIF for TNF-α induction was far superior to that of gram-negative bacterial endotoxin. Therefore, we, report for the first time, that active PKR is transported via microvesicles as stress granule aggregates and induces powerful inflammatory signals in macrophages.
Project description:Human deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These differences are attributable to their genetic backgrounds. Therefore the purpose of this study is to compare the differences of dental pulp in deciduous and permanent teeth.
Project description:In this study, through three-dimensional spheroid culture, a group of unique multipotent stem cells were identified from mouse dental papilla, called multipotent dental pulp-regenerative stem cells (MDPSCs). MDPSCs exhibited enhanced osteo/odontogenic differentiation capabilities and could form regenerative dentin and neurovascular-like structures that mimicked the native teeth in vivo. Further analysis revealed that CD24a was the bona fide marker for MDPSCs and their expansion was highly dependent on the expression of a key transcriptional factor Sp7. Finally, CD24a positive cells could be detected in primary dental papilla in mice and human, suggesting MDPSCs resided in their native niches. Together, our study has identified a novel group of multipotent pulpregenerative stem cells with defined molecular markers for the potential treatment of pulpitis and pulp necrosis.