Project description:Plants in their natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of plants in the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we compared transcriptional patterns of Arabidopsis thaliana roots and shoots in the presence and absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect of Arabidopsis shoots in the presence of soil microbes compared to axenically grown plants under identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also lead to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in oxidative stress/redox signalling, cell wall modification and plant defense. While most previous studies have focussed on individual plant-microbe interactions, our data suggest that multi-species transcriptional profiling, using simultaneous plant and metatranscriptomics coupled to metagenomics may be required to further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments. Four samples were analysed in total. One corresponded to a pooled sample of RNA extracted from root tissues of 60 plants. The other three were biological replicates from shoot tissues, each of which contained 20 plants. Controls were used as reference and corresponded to tissues of plants grown in sterile conditions.
Project description:Plants in their natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of plants in the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we compared transcriptional patterns of Arabidopsis thaliana roots and shoots in the presence and absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect of Arabidopsis shoots in the presence of soil microbes compared to axenically grown plants under identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also lead to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in oxidative stress/redox signalling, cell wall modification and plant defense. While most previous studies have focussed on individual plant-microbe interactions, our data suggest that multi-species transcriptional profiling, using simultaneous plant and metatranscriptomics coupled to metagenomics may be required to further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments.
Project description:Arbuscular mycorrhizal (AM) fungi contribute to plant nutrient uptake in systems managed with reduced fertilizer inputs such as organic agriculture and natural ecosystems by extending the effective size of the rhizosphere and delivering mineral. Connecting the molecular study of the AM symbiosis with agriculturally- and ecologically-relevant field environments remains a challenge and is a largely unexplored research topic. This study utilized a cross-disciplinary approach to examine the transcriptional, metabolic, and physiological responses of tomato (Solanum lycopersicum) AM roots to a localized patch of nitrogen (N). A wild-type mycorrhizal tomato and a closely-related nonmycorrhizal mutant were grown at an organic farm in soil that contained an active AM extraradical hyphal network and soil microbe community. The majority of genes regulated by upon enrichment of nitrogen were similarly expressed in mycorrhizal and nonmycorrhizal roots, suggesting that the primary response to an enriched N patch is mediated by mycorrhiza-independent root processes. However where inorganic N concentrations in the soil were low, differential regulation of key tomato N transport and assimilation genes indicate a transcriptome shift towards mycorrhiza-mediated N uptake over direct root supplied N. Furthermore, two novel mycorrhizal-specific tomato ammonium transporters were also found to be regulated under low N conditions. A conceptual model is presented integrating the transcriptome response to low N and highlighting the mycorrhizal-specific ammonium transporters. These results enhance our understanding of the role of the AM symbiosis in sensing and response to an enriched N patch, and demonstrate that transcriptome analyses of complex plant-microbe-soil interactions provide a global snapshot of biological processes relevant to soil processes in organic agriculture. 30 samples were analyzed. There were 2 genotypes (wildtype and mutant) and 3 treatments (two N treatments and a water control) for a total of 6 groups. Each group had 5 biological replicates.