Project description:Integrating laterally acquired virulence genes into the backbone regulatory network is important for the pathogenesis of Escherichia coli O157:H7, which has captured many virulence genes through horizontal transfer during evolution. GadE is an essential transcriptional activator of glutamate decarboxylase (GAD) system, the most efficient acid resistance mechanism in E. coli. The full contribution of GadE to the acid resistance and virulence of pathogenic E. coli O157:H7 remains largely unknown. We inactivated gadE in E. coli O157:H7 Sakai and compared global transcription profiles with that of wild type in exponential and stationary phases of growth using microarrays containing 6088 ORFs from three E. coli genomes. gadE inactivation significantly altered the expression of 60 genes independent of growth phase and 122 genes in a growth phase-dependent manner. Inactivation of gadE markedly down-regulated the expression of gadA, gadB, gadC and many acid fitness island genes in a growth phase-dependent manner. Nineteen genes encoded on the locus of enterocyte effacement (LEE), including ler, showed a significant increase in expression upon gadE inactivation. Altogether, our data indicate that GadE is critical for acid resistance of E. coli O157:H7 and plays an important role in virulence by down-regulating expression of LEE.
Project description:Deletion of yedL was found to signifcantly decrease type three secretion in EHEC O157:H7. Transcriptional profiles of Escherichia coli O157: H7 and the isogenic yedL mutant were generated and compared.
Project description:Deletion of yhaO was found to signifcantly decrease type three secretion in EHEC O157:H7. Transcriptional profiles of Escherichia coli O157: H7 and the isogenic yhaO mutant were generated and compared.
Project description:Pathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents. To identify non-toxic biofilm inhibitors for enterohemorrhagic Escherichia coli O157:H7, indole-3-acetaldehyde was used and reduced E. coli O157:H7 biofilm formation. Global transcriptome analyses revealed that indole-3-acetaldehyde most repressed two curli operons, csgBAC and csgDEFG, and induced tryptophanase (tnaAB) in E. coli O157:H7 biofilm cells. Electron microscopy showed that indole-3-acetaldehyde reduced curli production in E. coli O157:H7. Together, this study shows that Actinomycetales are an important resource of biofilm inhibitors as well as antibiotics.
Project description:Cinnamaldehyde is a natural antimicrobial and has been found to be effective against many foodborne pathogens including Escherichia coli O157:H7. Although its antimicrobial effects have been well investigated, limited information is available on its effects at the molecular level. Sublethal treatment at 200 mg/l cinnamaldehyde inhibited growth of E. coli O157:H7 at 37oC and for ≤ 2 h caused cell elongation, but from 2 to 4 h growth resumed and cells reverted to normal length. To understand this transient behaviour, genome-wide transcriptional analysis of E. coli O157:H7 was performed at 2 and 4 h exposure to cinnamaldehyde. Drastically different gene expression profiles were obtained at 2 and 4 h. At 2 h exposure, cinnamaldehyde induced overexpression of many oxidative stress-related genes, reduced DNA replication, and synthesis of protein, O-antigen and fimbriae. At 4 h, many cinnamaldehyde-induced repressive effects on E. coli O157:H7 gene expressions were reversed and oxidatve stress genes were nolonger differentially expressed.
Project description:Transcript abundance in Escherichia coli O157:H7 was determined in the presence or absence of pulsed expression of the small RNA, AsxR.
Project description:The transcriptome of Escherichia coli K-12 has been widely studied over a variety of conditions for the past decade while such studies involving E. coli O157:H7, its pathogenic cousin, are just now being conducted. To better understand the impact of an anaerobic environment on E. coli O157:H7, global transcript levels of strain EDL933 cells grown aerobically were compared to cells grown anaerobically using microarrays.
Project description:Integrating laterally acquired virulence genes into the backbone regulatory network is important for the pathogenesis of Escherichia coli O157:H7, which has captured many virulence genes through horizontal transfer during evolution. GadE is an essential transcriptional activator of glutamate decarboxylase (GAD) system, the most efficient acid resistance mechanism in E. coli. The full contribution of GadE to the acid resistance and virulence of pathogenic E. coli O157:H7 remains largely unknown. We inactivated gadE in E. coli O157:H7 Sakai and compared global transcription profiles with that of wild type in exponential and stationary phases of growth using microarrays containing 6088 ORFs from three E. coli genomes. gadE inactivation significantly altered the expression of 60 genes independent of growth phase and 122 genes in a growth phase-dependent manner. Inactivation of gadE markedly down-regulated the expression of gadA, gadB, gadC and many acid fitness island genes in a growth phase-dependent manner. Nineteen genes encoded on the locus of enterocyte effacement (LEE), including ler, showed a significant increase in expression upon gadE inactivation. Altogether, our data indicate that GadE is critical for acid resistance of E. coli O157:H7 and plays an important role in virulence by down-regulating expression of LEE. The results are based on O157:H7 Sakai wild type and gadE mutant exponential and stationary phase cultures grown in MOPS minimal medium. Differences in transcript levels were determined using a mixed model ANOVA in R/MAANOVA which tested for significant differences due to growth phase (exponential or stationary), strain (wild type or mutant) and the interaction of these two factors using the following linear model: array+dye+sample (biological replicate)+ phase+strain+phase*strain. We incorporated the dye-swaps among the biological replicates.
Project description:The transcriptome of Escherichia coli K-12 has been widely studied over a variety of conditions for the past decade while such studies involving E. coli O157:H7, its pathogenic cousin, are just now being conducted. To better understand the impact of intracellular life within a ruminant and environmental protozoan on E. coli O157:H7, global transcript levels of strain EDL933 cells inside Acanthamoeba were compared to cell grown in the protozoan media (ATCC PYG712) by microarray.