Project description:Patient-derived endometrial cancer organoids. The data was used to compare gene expression profile between organoids, and to explore whether an organoid-derived gene signature could predict disease outcomes in independent patient cohorts.
Project description:Colorectal cancer (CRC) is a commonly occurring cancer worldwide. Metastasis and recurrence are the major causes of cancer-related death. CRC progression is a multistep process, and extensive efforts have been made to identify the genomic and transcriptomic alterations that occur during this process. However, whether primary tumors and metastatic lesions possess distinct biological features remains unclear. We established 74 patient-derived organoids (PDOs) from primary tumors and patient-matched metastatic and recurrent lesions.
Project description:As metabolic rewiring is crucial for cancer cell proliferation, metabolic phenotyping of patient-derived organoids is desirable to identify drug-induced changes and trace metabolic vulnerabilities of tumor subtypes. We established a novel protocol for metabolomic and lipidomic profiling of colorectal cancer organoids by LC-QTOF-MS facing the challenge of capturing metabolic information from minimal sample amount (< 500 cells/injection) in the presence of extracellular matrix (ECM). The best procedure of the tested protocols included ultrasonic metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v/v) without ECM removal. To eliminate ECM-derived background signals, we implemented a data filtering procedure based on p-value and fold change cut-offs which retained features with signal intensities >120% compared to matrix-derived signals present in blank samples. As a proof-of-concept, the method was applied to examine the early metabolic response of colorectal cancer organoids to 5-fluorouracil treatment. Statistical analysis revealed dose-dependent changes in the metabolic profiles of treated organoids including elevated levels of 2'-deoxyuridine, 2'-O-methylcytidin, inosine and 1-methyladenosine and depletion of 2'-deoxyadenosine and specific phospholipids. In accordance with the mechanism of action of 5-fluorouracil, changed metabolites are mainly involved in purine and pyrimidine metabolism. The novel protocol provides a first basis for the assessment of metabolic drug response phenotypes in 3D organoid models.
Project description:We utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids to model neuropathology of Scz during this critical period. We discovered that Scz organoids exhibited ventricular neuropathology resulting in altered progenitor survival and disrupted neurogenesis. cz organoids principally differed not in their proteomic diversity, but specifically in their total quantity of disease and neurodevelopmental factors at the molecular level. Provides unique insights into the proteome landscape of schizophrenia in patient-derived cerebral organoids