Project description:Proteomic strategy to define therapeutically relevant targets in cell lines that contain the 11q13 amplicon compared to those that do not and to ascertain which genes are amplified at the protein level and, concomitantly, are key drivers for tumor growth and/or maintenance. Furthermore, so called passenger genes that are amplified with driver genes and a manifest on the cell surface can be attractive targets for an antibody – drug conjugate approach (ADC).
Project description:Contaminated aquifer (Dusseldorf-Flinger, Germany) templates extracted from 5 sediment depths ranging between 6.4 and 8.4 m below ground and over 3 years of sampling were amplified for amplicon pyrosequencing using the primers Ba27f (5’-aga gtt tga tcm tgg ctc ag-3’) and Ba519r (5’- tat tac cgc ggc kgc tg-3’), extended as amplicon fusion primers with respective primer A or B adapters, key sequence and multiplex identifiers (MID) as recommended by 454/Roche. Amplicons were purified and pooled as specified by the manufacturer. Emulsion PCR (emPCR), purification of DNA-enriched beads and sequencing run were performed following protocols and using a 2nd generation pyrosequencer (454 GS FLX Titanium, Roche) as recommended by the developer. Quality filtering of the pyrosequencing reads was performed using the automatic amplicon pipeline of the GS Run Processor (Roche), with a slight modification concerning the valley filter (vfScanAllFlows false instead of TiOnly) to extract the sequences. Demultiplexed raw reads were furhter trimmed for quality and lenght (>250 bp).
Project description:Contaminated aquifer (Dusseldorf-Flinger, Germany) templates extracted from 5 sediment depths ranging between 6.4 and 8.4 m below ground and over 3 years of sampling were amplified for amplicon pyrosequencing using the primers Ba27f (5’-aga gtt tga tcm tgg ctc ag-3’) and Ba519r (5’- tat tac cgc ggc kgc tg-3’), extended as amplicon fusion primers with respective primer A or B adapters, key sequence and multiplex identifiers (MID) as recommended by 454/Roche. Amplicons were purified and pooled as specified by the manufacturer. Emulsion PCR (emPCR), purification of DNA-enriched beads and sequencing run were performed following protocols and using a 2nd generation pyrosequencer (454 GS FLX Titanium, Roche) as recommended by the developer. Quality filtering of the pyrosequencing reads was performed using the automatic amplicon pipeline of the GS Run Processor (Roche), with a slight modification concerning the valley filter (vfScanAllFlows false instead of TiOnly) to extract the sequences. Demultiplexed raw reads were furhter trimmed for quality and lenght (>250 bp). 15 samples examined in total from important plume zones of the aquifer sampled in Feb. 2006, Sep. 2008 and Jun. 2009 (5 every year of sampling).
Project description:Proteomic strategy to define therapeutically relevant targets in cell lines that contain the 11q13 amplicon compared to those that do not and to ascertain which genes are amplified at the protein level and, concomitantly, are key drivers for tumor growth and/or maintenance. Furthermore, so called passenger genes that are amplified with driver genes and a manifest on the cell surface can be attractive targets for an antibody â?? drug conjugate approach (ADC).
Project description:Amplicon-based targeted re-sequencing analysis was performed in the patient-derived gliobastoma cell culture samples. For this purpose, genomic DNA (gDNA) was isolated and DNA libraries were prepared using the TruSeq Custom Amplicon Low Input (Illumina, Inc.) technology. By this, a pool of 375 amplicons was generated for each single sample in order to enrich for the target genes ATRX1, EGFR, IDH1, NF1, PDGFRA, PIK3CG, PIK3R1, PTEN, RB1 and TP53. Sequencing was performed on the Illumina MiSeq® next generation sequencing system (Illumina Inc.) and its 2 x 250 bp paired-end v2 read chemistry. The resulting reads were quality controlled and mapped against the human reference genome (hg19). For all samples, sequence variations of the amplified regions of interest in comparison to the human reference sequence were identified and filtered based on reliability.
Project description:Witches' broom disease (WBD) is a major constraint for cacao production in the Americas. The severe socioeconomic impact of WBD encouraged the evaluation of different control strategies, including the use of strobilurin fungicides. These molecules inhibit mitochondrial respiration, thus impairing ATP generation and leading to oxidative stress. These chemicals, however, have proven ineffective against the WBD pathogen Moniliophthora perniciosa. Here, we demonstrate that M. perniciosa tolerates high concentrations of strobilurins under in vitro conditions and highlight a set of molecular alterations that correlate with strobilurin tolerance in this fungus. Short-term exposure of M. perniciosa to the commercial strobilurin azoxystrobin led to the up-regulation of genes encoding enzymes of the glyoxylate cycle, gluconeogenesis, and fatty acid and amino acid catabolism, indicating that the fungal metabolism is remodeled to compensate for reduced ATP production. Furthermore, cell division, ribosome biogenesis, and sterol metabolism were repressed, which agrees with the impaired mycelial growth on azoxystrobin. Genes associated with cellular detoxification and response to oxidative stress (e.g., cytochrome P450s, membrane transporters and glutathione s-transferases) were strongly induced by the drug and represent potential strategies used by the pathogen to mitigate the toxic effects of the fungicide. Remarkably, exposure of M. perniciosa to azoxystrobin resulted in the spontaneous generation of a mutant with increased resistance to strobilurin. Comparative genomics and transcriptomics revealed alterations that may explain the resistance phenotype, including a large deletion in a putative transcriptional regulator and significant changes in the mutant transcriptome. Overall, this work provides important advances towards a comprehensive understanding of the molecular basis of strobilurin resistance in a tropical fungal pathogen. This is a fundamental step to efficiently employ these fungicides in agriculture and to prevent the emergence of strobilurin resistance.
Project description:Amplification of chromosome 17q23 is a frequent genomic event that occurs in ~ 11% of human breast cancers. The 17q23 amplification is enriched in HER2+ breast cancers, which is significantly correlated with poor clinical outcomes. Previous studies have identified the oncogenic phosphatase WIP1 gene in the amplicon, which functions as a master inhibitor in DNA damage response. While the possibility of any other protein-coding oncogenes in the WIP1-containing 17q23 amplicon was ruled out, our analysis of human breast cancer genomics uncovered an oncogenic microRNA gene, MIR21, in a majority of the WIP1-containing amplicons. Interestingly, DEAD-box helicase 5 (DDX5), co-amplified with WIP1 and MIR21 in the 17q23 amplicon, facilitates the essential processing of primary miR-21 transcripts. Accordingly, the 17q23 amplification results in aberrant expression of WIP1 and miR-21, which not only promotes breast tumorigenesis, but also leads to resistance to anti-HER2 therapies. Inhibiting WIP1 and miR-21 using small molecular inhibitor against WIP1 (GSK2830371) and anti-miR-21 oligonucleotides selectively inhibits the proliferation, survival and tumorigenic potential of HER2+ breast cancer cells harboring 17q23 amplification. However, the in vivo bioavailability of the two agents in their free form is poor. To overcome the resistance of trastuzumab-based therapies in vivo, we developed pH-sensitive nanoparticles for specific co-delivery of the two agents into breast tumors. The nanoparticles consist of four materials approved by the Food and Drug Administration (FDA) for medical use: Poly (d,l-lactide-co-glycolide) (PLGA), Pluronic F127 (PF127), chitosan, and 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC). Moreover, chitosan was modified with guanidine to form chitosan-guanidine (CG), which not only can improve the encapsulation efficiency of anti-miR-21 oligonucleotides but also effectively capture carbon dioxide (CO2) into the nanoparticle to achieve the ‘nano-bomb’ effect for triggered drug release under the reduced pH in tumors. The two agents (inhibitors of miR-21 and WIP1)-laden nanoparticles can be used to efficiently kill trastuzumab-resistant HER2+ breast cancer cells, leading to a profound reduction of the tumor growth in vivo. These results demonstrate the great potential of the combined treatment of WIP1 and miR-21 inhibitors for the HER2+ breast cancers resistant to anti-HER2-based therapies.