Project description:Prions are self-propagating protein aggregates that act as protein-based genetic elements in fungi. Although prevalent in eukaryotes, prions have not been identified in bacteria. Here we demonstrate that a bacterial protein, transcription terminator Rho of Clostridium botulinum (Cb-Rho), can form a prion. Specifically, we identify a candidate prion-forming domain (cPrD) in Cb-Rho and show that it confers amyloidogenicity on Cb-Rho and can functionally replace the PrD of a yeast prion-forming protein. Furthermore, we show that its cPrD enables Cb-Rho to access alternative conformations in bacteria, a soluble form that terminates transcription efficiently and an aggregated, self-propagating prion form that is functionally compromised, causing genome-wide changes in the transcriptome. Thus, Cb-Rho functions as a protein-based genetic element in bacteria, suggesting that the emergence of prions predates the evolutionary split between eukaryotes and bacteria.
Project description:Determine in the context of a controlled crossover diet-intervention trial the role of taurocholic acid metabolism by gut bacteria in African American subjects at elevated risk for colorectal cancer (CRC). Two isocaloric diets, an animal-based diet high in taurine and saturated fat (HT-HSAT) and a plant-based, low in taurine and low saturated fat (LT-LSAT) will be used to determine the extent to which the relationship between diet (independent variable) and mucosal markers of CRC risk including epithelial proliferation, oxidative stress, DNA damage, and primary and secondary bile acid pools and biomarkers of inflammation (dependent variables) is explained by the abundance of sulfidogenic bacteria and hydrogen sulfide (H2S) concentrations &/or deoxycholic acid (DCA) and DCA-producing bacteria clostridium scindens (mediator variables).
Project description:Transcription generates local topological and mechanical constraints along the DNA fiber, driving for instance the generation of supercoiled chromosomal domains in bacteria. However, the global impact of transcription-based regulation of chromosome organization remains elusive. Notably, the scale of genes and operons in bacteria remains well below the resolution of chromosomal contact maps generated using Hi-C (~ 5 - 10 kb), preventing to resolve the impact of transcription on genomic organization at the fine-scale. Here, we combined sub-kb Hi-C contact maps and chromosome engineering to visualize individual transcriptional units (TUs) while turning off transcription across the rest of the genome. We show that each TU forms a discrete, transcription-induced 3D domain (TIDs). These local structures impose mechanical and topological constraints on their neighboring sequences at larger scales, bringing them closer together and restricting their dynamics. These results show that the primary building blocks of bacteria chromosome folding consists of transcriptional domains that together shape the global genome structure.
Project description:Sexual reproduction and recombination are essential for the survival of most eukaryotic populations. Until recently, the impact of these processes on the structure of bacterial populations has been largely overlooked. The advent of large-scale whole-genome sequencing and the concomitant development of molecular tools, such as microarray technology, facilitate the sensitive detection of recombination events in bacteria. These techniques are revealing that bacterial populations are comprised of isolates that show a surprisingly wide spectrum of genetic diversity at the DNA level. Our new awareness of this genetic diversity is increasing our understanding of population structures and of how these affect host?pathogen relationships. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:Pathogenic bacteria encounter a variety of stressful host environments during infection. Their responses to meet these challenges protect them from deadly damages and aid in adaption to harmful environments. Bacterial products critical for this protection are therefore interesting as suitable targets for new antimicrobials. To shed light on the complex array of molecular pathways involved in bacterial stress responses we challenged 32 diverse human pathogenic bacteria to 11 infection related stress conditions and catalogued their transcriptomes. Initial analyses of the comprehensive data set showed that beside coding RNAs, known and yet unknown putative novel ncRNAs comprise a significant part of the responses. We also computed a scores for all genes to be used for predictions for their probability to be regulated at certain stresses. The core scores enabled identification of universal stress responders representing conserved gene products involved in basic mechanisms important for responses to multiple stresses. Further, the environmental specific core scores made it possible to predict functions of yet non-characterized and also hypothetical gene products. All data are collected in the PATHOGENEX interactive RNA atlas, which is made available to the research community providing ample opportunities for discovering new aspects of regulatory networks in pathogenic bacteria as well as identification of novel players critical for bacterial infectivity and maintenance of infections.
Project description:Epithelial cells were in contact with bacteria supernatant during different times of incubation. time course supernatant 10 % MM39 Keywords: time-course
Project description:Transcriptional profiling of D. discoideum revealed sets of genes whose expression is enriched in amoebae interacting with different species of bacteria, including sets that appear specific to amoebae interacting with Gram(+), or with Gram(-) bacteria. In a genetic screen utilizing the growth of mutant amoebae on a variety of bacteria as a phenotypic readout, we identified amoebal genes that are only required for growth on Gram(+) bacteria, including one that encodes the cell surface protein gp130, as well as several genes that are only required for growth on Gram(-) bacteria including one that encodes a putative lysozyme, AlyL. These genes are required for parts of the transcriptional response of wild-type amoebae, and this allowed their classification into potential response pathways.
Project description:Eukaryotic Argonautes bind small RNAs and use them as guides to find complementary RNA targets and induce gene silencing. Though homologs of eukaryotic Argonautes are present in many bacteria and archaea their small RNA partners and functions are unknown. We found that the Argonaute of Rhodobacter sphaeroides (RsAgo) associates with 15-19 nt small RNAs that correspond to the majority of transcripts. RsAgo also binds single-stranded 22-24 nt DNA molecules that are complementary to the small RNAs and enriched in sequences derived from exogenous plasmids as well as genome-encoded foreign nucleic acids such as transposons and phage genes. Expression of RsAgo in the heterologous E. coli system leads to formation of plasmid–derived small RNA and DNA and plasmid degradation. In a R. sphaeroides mutant lacking RsAgo, expression of plasmid-encoded genes is elevated, while other genes are unaffected. Our results indicate that RNAi-related processes found in eukaryotes are also conserved in bacteria and target foreign nucleic acids.
Project description:The ability to respond to stress is at the core of an organism’s survival. The hormones epinephrine and norepinephrine play a central role in stress responses in mammals, which require the synchronized interaction of the whole neuroendocrine system. Bacteria also sense and respond to epinephrine and norepinephrine as a means to gauge the metabolic and immune state of the host. Mammalian adrenergic receptors are G-coupled protein receptors (GPCRs), bacteria, however, sense these hormones through histidine sensor kinases (HKs). HKs autophosphorylate in response to multiple signals and transfer this phosphate to response regulators (RRs). Two bacterial adrenergic receptors have been identified in EHEC, QseC and QseE, with QseE being downstream of QseC in this signaling cascade. We mapped the QseC signaling cascade in the deadly pathogen enterohemorrhagic E. coli (EHEC), which exploits this signaling system to promote disease. Through QseC, EHEC activates expression of metabolic, virulence and stress response genes, synchronizing the cell response to these stress hormones. Coordination of these responses is achieved by QseC phosphorylating three of the thirty two EHEC RRs. The QseB RR, which is QseC’s cognate RR, activates the flagella regulon which controls bacteria motility and chemotaxis. The QseF RR, which is phosphorylated by the QseE adrenergic sensor, coordinates expression of virulence genes involved in formation of lesions in the intestinal epithelia by EHEC, and the bacterial SOS stress response. The third RR, KdpE, controls potassium uptake, osmolarity response, and also the formation of lesions in the intestine. Adrenergic regulation of bacterial gene expression shares several parallels with mammalian adrenergic signaling having profound effects in the whole organism. Understanding adrenergic regulation of a bacterial cell is a powerful approach to study the underlying mechanisms of stress and cellular survival.