Project description:Transcriptional profiling of N-Tera2 differentiated human neuronal cells, comparing control uninfected cells to HCoV-OC43 infected cells at 24, 48 and 72 hour post-infection Keywords: Cell response to viral infection Two-condition experiment, N-Tera2 differentiated human neuronal cell mock infected vs. N-Tera2 differentiated human neuronal cell HCoV-OC43 infected at 24, 48 and 72 hours. Biological replicates: 2 at each time-course point. Technical replicate: 2 dye-swap at each time-point. 2 arrays hybridized with mock(cy3) vs infected(cy5) and 2 array with infected(cy3) vs mock(cy5).
Project description:This study reports a screen to identify putative inhibitors of the eIF4F complex for potential effects on blocking coronavirus replication, using HCoV-OC43 (OC43) infection of Vero E6 cells and the lung epithelial cancer line A549 as models.
Project description:This study reports a screen to identify putative inhibitors of the eIF4F complex for potential effects on blocking coronavirus replication, using HCoV-OC43 (OC43) infection of Vero E6 cells and the lung epithelial cancer line A549 as models.
Project description:The emergence of novel betacoronaviruses has posed significant financial and human health burdens, necessitating the development of appropriate tools to combat future outbreaks. In this study, we have characterized a human cell line, IGROV-1, as a robust tool to detect, propagate, and titrate betacoronavirus SARS-CoV-2 and HCoV-OC43. IGROV-1 cells can be used for serological assays, antiviral drug testing, and isolating SARS-CoV-2 variants from patient samples. Using time-course transcriptomics, we confirmed that IGROV-1 cells exhibit a robust innate immune response upon SARS-CoV-2 infection, recapitulating the response previously observed in primary human nasal epithelial cells. We performed genome-wide CRISPR knockout genetic screens in IGROV-1 cells and identified Aryl hydrocarbon receptor (AHR) as a critical host dependency factor for both SARS-CoV-2 and HCoV-OC43. Using DiMNF, a small molecule inhibitor of AHR, we observed that the drug selectively inhibits HCoV-OC43 infection but not SARS-CoV-2. Transcriptomic analysis in primary normal human bronchial epithelial cells revealed that DiMNF blocks HCoV-OC43 infection via basal activation of innate immune responses. Our findings highlight the potential of IGROV-1 cells as a valuable diagnostic and research tool to combat betacoronavirus diseases.