Project description:By means of semi-continuous experiment, the washout effect of incoming and outgoing materials and long-term accumulation of endogenous ammonia in actual anaerobic digestion plant were simulated, and the ammonia inhibition mechanism in anaerobic digestion was explored.
Project description:To unravel the adaptation strategies of D. shibae to anaerobic conditions in microaerobic to anaerobic parts of the ocean and to define the underlying regulatory network an anaerobic shift experiment in Salt-Water-Medium in a chemostate was established. Transcriptome analyses were used to investigate the physiological status of D. shibae under this conditions.
Project description:A comparative transcriptome approach was used to assess genes involved in metabolism and pathogenesis that are specifically activated during anaerobic growth of the spore-forming food-borne human pathogen Bacillus cereus ATCC 14579. Growth under anaerobic conditions in Brain Heart Infusion broth revealed a reduced growth rate and a lower yield as compared to that under aerobic conditions. Comparative transcriptome analysis of cells harvested at early- and mid-exponential growth phase, transition phase and stationary phase, subsequently showed hundreds of genes to be induced under anaerobic condition. These included novel genes identified for anaerobic growth of B. cereus, encoding metabolic pathways, such as the arginine deiminase pathway (ArcABDC), a formate dehydrogenase (FdhF) and a pyruvate fomate lyase (Pfl), and alternative respiratory proteins, such as arsenate reductases. Furthermore, the nitrosative stress response was induced in the anaerobic transition phase of growth, conceivably due to the production of nitric oxide as a by-product of nitrite and nitrate respiration. Notably, both hemolytic enzyme and enterotoxin encoding genes were activated in different oxygen limiting conditions, i.e. hemolytic enzyme encoding genes were induced during anaerobic growth, whereas enterotoxin encoding genes were induced in the transition and stationary phase of aerobic cultures reaching a high cell density. These data point to metabolic rearrangements, stress adaptation and activation of the virulent status of B. cereus under anaerobic conditions, such as encountered in the human GI-tract. Keywords: time course, anaerobic growth
Project description:Actinobacillus pleuropneumoniae is an important porcine respiratory pathogen causing great economic losses in the pig industry worldwide. Oxygen deprivation is a stress that A. pleuropneumoniae will encounter during both early infection and the later, persistent stage. To understand modulation of A. pleuropneumoniae gene expression in response to the stress caused by anaerobic conditions, gene expression profiles under anaerobic and aerobic conditions were compared in this study. The microarray results showed that 631 genes (27.7% of the total ORFs) were differentially expressed in anaerobic conditions. Many genes encoding proteins involved in glycolysis, carbon source uptake systems, pyruvate metabolism, fermentation and the electron respiration transport chain were up-regulated. These changes led to an increased amount of pyruvate, lactate, ethanol and acetate in the bacterial cells as confirmed by metabolite detection. Genes encoding proteins involved in cell surface structures, especially biofilm formation, peptidoglycan biosynthesis and lipopolysaccharide biosynthesis were up-regulated as well. Biofilm formation was significantly enhanced under anaerobic conditions. These results indicate that induction of central metabolism is important for basic survival of A. pleuropneumoniae after a shift to an anaerobic environment. Enhanced biofilm formation may contribute to the persistence of this pathogen in the damaged anaerobic host tissue and also in the early colonization stage. These discoveries give new insights into adaptation mechanisms of A. pleuropneumoniae in response to environmental stress.
Project description:We optimzed ATAC-seq library preparation for use with Drosophila melanogaster. The protocol addresses factors specific to fruit flies, such as the insect exoskeleton and smaller genome size. The optimized protocol provides guidelines for sample input, nuclei isolation, and enzymatic reaction times. The data included here were generated using our optimized library preparation workflow.
Project description:To determine the transcriptional changes that occur when yeast is shifted from anaerobic growth to an aerobic environment over a period of 120 minutes. Keywords: time course, stress response, environmental response, aerobic, anaerobic
Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.
Project description:We evaluated the effect of the small RNA library preparation method on 5' tRNA-halves and miRNA abundance in libraries prepared from serum RNA using three commercially available small RNA library preparation kits (TruSeq small RNA library preparation kit v2 (Illumina), TailorMix miRNA sample preparation kit v2 (Seqmatic) and the NEBNext Multiplex Small RNA library prep kit (New England Biolabs)). RNA isolated from 100 µl of serum collected from healthy mice was used as input for the preparation of a small RNA library in duplicate and libraries were single end sequenced.
Project description:Transcript abundance profiles were examined over the first 24 hours of germination in rice grown under anaerobic conditions. Transcript abundance profiles were also examined for rice grown under aerobic conditions for 24 h and then switched to anaerobic conditions and vice versa.