Project description:Highly specific amplification of complex DNA pools without bias or template-independent products (TIPs) remains a challenge. We have developed a procedure using phi29 DNA polymerase and trehalose and optimized control of amplification to create micrograms of specific amplicons without TIPs from down to sub-femtograms of DNA. The amplicons from 5 ng and 0.5 ng DNA, which were from originally good quality of gDNA (05-050), or partially degraded gDNA (04-018), were validate with Illumina HumanHap550-Duo Genotyping Beadchip. As seen in (Suppl. Table 5a), the call rates (97.30% to 99.07%) and accuracy or concordance ( > 99.85% for the SNPs called in both amplicon and natural reference) for 5 ng derived amplicons with both Wpa and Gv2 were close to each other and close to native gDNA (call rate: 98.3% to 99.75%). These call rates were better than a recent report (amplicon 95.9% vs. un-amplified 98.5%), in which the early kit Repli-g 625S was applied, and re-genotyping was performed when the performance was low and duplicate samples were filtered for the highest call rate. The genotyping accuracy of Wpa was actually in the same range as the variation in technical replicates with similar SNP typing arrays (99.87% and 99.88%, replicated Affymetrix array, or between Affymetrix and Illumina arrays). Importantly, the genotyping concordance for amplicons generated from 0.5 ng with Wpa (99.88% and 99.69%) were also close to the technical replicates. In this case, the call rates of Wpa were slightlyreduced compared to that with 5 ng input, but the call rate for the partially degraded sample 04-018, was modestly improved over Gv2 (92.06 % vs. 90.53%). Wpa data also showed some amplification non-uniformity among different locations, resulting in some âartificial CNVsâ similar to Gv2 (exampled as in Suppl. Fig. 5 and Suppl. Table 6), with the outputs obtained by taking unamplified gDNAs as their reference. This imbalance however was consistent and reproducible for each method but different between Wpa and Gv2. These artificial CNVs can be efficiently cancelled if pair-wise amplified test and reference are compared, as observed in CGH result (Fig. 4 and Suppl. Fig. 4), also supported by others {Pugh 2008}. It is interesting to note that the representation of chromosomal terminal sequences was greatly improved with Wpa compared with Gv2 (Fig. 5), and that some of these regions were significantly under-amplified or even lost with Gv2 (Suppl. Fig. 5 and Suppl. Table 6, 7), as also independently reported recently {Pugh 2008}. This occurred especially in the terminal 3 to 5 Mb and sometimes extended to 10 Mb in many chromosome termini, and was particularly serious when low levels or degraded DNA was as input. An analysis for 5 Mb termini is shown (Suppl. Table 5b calculated all involved SNPs as a cohort. Fig. 5 and Suppl. Tables 6 and 7 were the result for each chromosome terminus). Importantly, the SNP typing was also greatly improved, outstandingly exemplified by the amplicons of 0.5 ng input for the partially degraded 04-018, with Wpa versus Gv2 call rate of 91.9% vs. 84.45% and accuracy of 99.57% vs. 98.62%. The result also showed that these terminal regions underrepresentation in Gv2 was not absolutely associated with the distance-to-end, but possibly was a sequence related issue. Keywords: Whole-pool amplification, whole genome SNP typing The overall goal of the part of study was a validation of the quality of the amplicons from different amounts (5ng and 0.5 ng) of original starting gDNA, good quality (sample 05-050) or partially degraded gDNA (sample 04-018), with our new procedure Wpa, and with native gDNA as control, in terms of the call rate and accuracy (allele bias) in addition to the uniformity of the sequence amplified (sequence representation or sequence bias). Amplified or native genomic DNA isolated from patients was in-parallel analyzed/genotyped with the same experimental platform, of which the native genomic DNAs were used as the standard controls. For the sequence representation, the two alleles of the SNPsâ signal of a panel of multiple native DNAsâ signal provided by the experimental platform (Illumina) was used as the reference, so that an abstract signal for sequence representation of each SNP and for all SNPs was obtained.
Project description:Massively parallel sequencing of 16S rRNA genes enables the comparison of terrestrial, aquatic, and host-associated microbial communities with sufficient sequencing depth for robust assessments of both alpha and beta diversity. Establishing standardized protocols for the analysis of microbial communities is dependent on increasing the reproducibility of PCR-based molecular surveys by minimizing sources of methodological bias. In this study, we tested the effects of template concentration, pooling of PCR amplicons, and sample preparation/interlane sequencing on the reproducibility associated with paired-end Illumina sequencing of bacterial 16S rRNA genes. Using DNA extracts from soil and fecal samples as templates, we sequenced pooled amplicons and individual reactions for both high (5- to 10-ng) and low (0.1-ng) template concentrations. In addition, all experimental manipulations were repeated on two separate days and sequenced on two different Illumina MiSeq lanes. Although within-sample sequence profiles were highly consistent, template concentration had a significant impact on sample profile variability for most samples. Pooling of multiple PCR amplicons, sample preparation, and interlane variability did not influence sample sequence data significantly. This systematic analysis underlines the importance of optimizing template concentration in order to minimize variability in microbial-community surveys and indicates that the practice of pooling multiple PCR amplicons prior to sequencing contributes proportionally less to reducing bias in 16S rRNA gene surveys with next-generation sequencing.
Project description:Highly specific amplification of complex DNA pools without bias or template-independent products (TIPs) remains a challenge. We have developed a procedure using phi29 DNA polymerase and trehalose and optimized control of amplification to create micrograms of specific amplicons without TIPs from down to sub-femtograms of DNA. The amplicons from 5 ng and 0.5 ng DNA, which were from originally good quality of gDNA (05-050), or partially degraded gDNA (04-018), were validate with Illumina HumanHap550-Duo Genotyping Beadchip. As seen in (Suppl. Table 5a), the call rates (97.30% to 99.07%) and accuracy or concordance ( > 99.85% for the SNPs called in both amplicon and natural reference) for 5 ng derived amplicons with both Wpa and Gv2 were close to each other and close to native gDNA (call rate: 98.3% to 99.75%). These call rates were better than a recent report (amplicon 95.9% vs. un-amplified 98.5%), in which the early kit Repli-g 625S was applied, and re-genotyping was performed when the performance was low and duplicate samples were filtered for the highest call rate. The genotyping accuracy of Wpa was actually in the same range as the variation in technical replicates with similar SNP typing arrays (99.87% and 99.88%, replicated Affymetrix array, or between Affymetrix and Illumina arrays). Importantly, the genotyping concordance for amplicons generated from 0.5 ng with Wpa (99.88% and 99.69%) were also close to the technical replicates. In this case, the call rates of Wpa were slightlyreduced compared to that with 5 ng input, but the call rate for the partially degraded sample 04-018, was modestly improved over Gv2 (92.06 % vs. 90.53%). Wpa data also showed some amplification non-uniformity among different locations, resulting in some “artificial CNVs” similar to Gv2 (exampled as in Suppl. Fig. 5 and Suppl. Table 6), with the outputs obtained by taking unamplified gDNAs as their reference. This imbalance however was consistent and reproducible for each method but different between Wpa and Gv2. These artificial CNVs can be efficiently cancelled if pair-wise amplified test and reference are compared, as observed in CGH result (Fig. 4 and Suppl. Fig. 4), also supported by others {Pugh 2008}. It is interesting to note that the representation of chromosomal terminal sequences was greatly improved with Wpa compared with Gv2 (Fig. 5), and that some of these regions were significantly under-amplified or even lost with Gv2 (Suppl. Fig. 5 and Suppl. Table 6, 7), as also independently reported recently {Pugh 2008}. This occurred especially in the terminal 3 to 5 Mb and sometimes extended to 10 Mb in many chromosome termini, and was particularly serious when low levels or degraded DNA was as input. An analysis for 5 Mb termini is shown (Suppl. Table 5b calculated all involved SNPs as a cohort. Fig. 5 and Suppl. Tables 6 and 7 were the result for each chromosome terminus). Importantly, the SNP typing was also greatly improved, outstandingly exemplified by the amplicons of 0.5 ng input for the partially degraded 04-018, with Wpa versus Gv2 call rate of 91.9% vs. 84.45% and accuracy of 99.57% vs. 98.62%. The result also showed that these terminal regions underrepresentation in Gv2 was not absolutely associated with the distance-to-end, but possibly was a sequence related issue. Keywords: Whole-pool amplification, whole genome SNP typing
Project description:This experiment highlights the extreme sequence bias generated by standard PCR amplication of sequencing libraries and decribes an adapted T7-polymerase based amplification method, which results in non-baised, representative libraries for Illumina sequencing
Project description:Purpose: Opium poppy is one of the most important medical plants and remains the only commercial resource of morphinan-based painkillers. However, little is known about its regulation mechanism in benzylisoquinoline alkaloids (BIAs) biosynthesis. Herein, the Transcriptome dataset of Opium poppy was constructed to identify the gene involved in its regulation mechanism in BIAs biosynthesis. Methods: Using Illumina HiSeq X Ten platform, 33 samples of Illumina transcriptome data from different tissues, growth phases and cultivars were constructed. Results: The high-quality transcripts were subsequent quantified with the short reads, and the expression of each unigenes among different samples was calculated by RPKM (the reads per kilobase per million mapped reads). Conclusions: These data provide a foundation of opium poppy transcriptome which may contribute to understand the regulation of BIAs biosynthesis.
Project description:Purpose: Opium poppy is one of the most important medical plants and remains the only commercial resource of morphinan-based painkillers. However, little is known about its regulation mechanism in benzylisoquinoline alkaloids (BIAs) biosynthesis. Herein, the Transcriptome dataset of Opium poppy was constructed to identify the gene involved in its regulation mechanism in BIAs biosynthesis. Methods: Using Illumina HiSeq X Ten platform, 33 samples of Illumina transcriptome data from different tissues, growth phases and cultivars were constructed. Results: The high-quality transcripts were subsequent quantified with the short reads, and the expression of each unigenes among different samples was calculated by RPKM (the reads per kilobase per million mapped reads). Conclusions: These data provide a foundation of opium poppy transcriptome which may contribute to understand the regulation of BIAs biosynthesis.
Project description:Purpose: Opium poppy is one of the most important medical plants and remains the only commercial resource of morphinan-based painkillers. However, little is known about its regulation mechanism in benzylisoquinoline alkaloids (BIAs) biosynthesis. Herein, the Transcriptome dataset of Opium poppy was constructed to identify the gene involved in its regulation mechanism in BIAs biosynthesis. Methods: Using Illumina HiSeq X Ten platform, 33 samples of Illumina transcriptome data from different tissues, growth phases and cultivars were constructed. Results: The high-quality transcripts were subsequent quantified with the short reads, and the expression of each unigenes among different samples was calculated by RPKM (the reads per kilobase per million mapped reads). Conclusions: These data provide a foundation of opium poppy transcriptome which may contribute to understand the regulation of BIAs biosynthesis.