Project description:We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long-reads and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from three different tissue types from three other species of squid species (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein coding genes supported by evidence and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome.
Project description:Unique traits of pluripotent stem cells are not fully known. Using thermal proteome profiling, we identified reduced stability of ribosomes in induced pluripotent cells (iPSCs) compared to that in somatic cells. Also, iPSCs exhibited lower protein synthesis rate and lower expression of a ribosome maturation factor, the Shwachman-Bodian-Diamond Syndrome protein (SBDS). Differentiation of iPSCs led to upregulation of SBDS and knock-down of SBDS slowed the differentiation while increasing expression of master pluripotency markers NANOG and OCT4. Mutations in the SBDS gene have been shown to impair ribosome assembly and to inhibit differentiation of hematopoietic stem cells causing the Shwachman-Diamond syndrome. Physiological SBDS-dependent destabilization of ribosomes appears to be a tool for translational control providing robustness to the state of pluripotency.
Project description:Unique traits of pluripotent stem cells are not fully known. Using thermal proteome profiling, we identified reduced stability of ribosomes in induced pluripotent cells (iPSCs) compared to that in somatic cells. Also, iPSCs exhibited lower protein synthesis rate and lower expression of a ribosome maturation factor, the Shwachman-Bodian-Diamond Syndrome protein (SBDS). Differentiation of iPSCs led to upregulation of SBDS and knock-down of SBDS slowed the differentiation while increasing expression of master pluripotency markers NANOG and Oct-4. Mutations in the SBDS gene have been shown to impair ribosome assembly and to inhibit differentiation of hematopoietic stem cells causing the Shwachman- Diamond syndrome. Physiological SBDS-dependent destabilization of ribosomes appears to be a tool for translational control providing robustness to the state of pluripotency.