Project description:The majority of babies in the US are formula-fed instead of breast fed. There are major differences in the composition of formulas and breast milk and yet little is known about metabolic differences in babies as the result of feeding these very different diets and how that might affect development or disease risk in later life. One concern is that soy-based formulas might have adverse health effects in babies as a result of the presence of low levels of estrogenic phytochemicals genistein and daidzein which are normally present in soy beans. In the current study, we used a piglet model to look at this question. Piglets were either fed breast milk from the sow or were fed two different infant formulas (cow's milk-based or soy-based) from age 2 days to 21 days when pigs are normally weaned onto solid food. Blood glucose and lipids were measured. Formula-fed pigs were found to have lower cholesterol than breast fed piglets and in addition had larger stores of iron in their liver.Microarray analysis was carried out to see if changes in liver gene expression could explain these effects of formula feeding. It was found that overall gene expression profiles were influenced by formula feeding compared to breast fed neonates. Gender-independent and unique effects of formula influenced cholesterol and iron metabolism. Further, soy formula feeding in comparison to milk-based formula failed to reveal any estrogenic actions on hepatic gene expression in either male or female pigs. Piglets (female, male) were either fed breast milk from the sow or were fed two different infant formulas (cow's milk-based or soy-based) from age 2 days to 21 days when pigs are normally weaned onto solid food.
Project description:Microbiota assembly in the infant gut is influenced by time and duration of dietary exposure to breast-milk, infant formula and solid foods.
Project description:Here we studied the glycation of bovine milk proteins by lactose as dominant sugar in milk and hexoses using tandem mass spectrometry (CID and ETD mode). In a bottom-up proteomics approach after enriching glycated peptides by boronate affinity chromatography, first we could identify 260 lactosylated peptides corresponding to 124 lactosylation sites in 28 bovine milk proteins in raw milk, raw colostrum, three brands of pasteurized milk, three brands of UHT milk, and five brands of infant formula. The same regular and additionally two lactose-free milk products (pasteurized and UHT milk) where lactose is enzymatically cleaved into the more reactive hexoses were analyzed in terms of hexosylation sites that resulted in identification of 124 hexosylated tryptic peptides corresponding to 86 glycation sites in 17 bovine milk proteins. In quantitative terms glycation increased from raw milk to pasteurized milk to UHT milk and infant formula, i.e., with the harsher processing conditions. Lactose-free milk contained significantly higher hexosylation degrees than the corresponding regular milk product.
Project description:There is little information regarding the allergen content of milk feeds in the preterm population. Previous studies have evaluated specific proteins/peptides via ELISA, but no studies have performed a broad analysis of the allergenic peptide content and protease activity of milk feeds in this population. Preterm infants spend a critical window of time for immune development in the Newborn Intensive Care Unit (NICU), and may receive fortified donor milk, maternal milk or formula feeds via nasogastric tube or bottle instead of fresh breastmilk via breastfeeding.
Project description:Over the course of milk digestion, native milk proteases and infant digestive proteases fragment intact proteins into peptides with potential bioactivity. This study investigated the release of peptides over three hours of gastric digestion in 14 preterm infant sample sets. The peptide content was extracted and analyzed from milk and gastric samples via Orbitrap tandem mass spectrometry. The relative ion intensity (abundance) and count of peptides in each sample were compared over time and between infants fed milk fortified with bovine milk fortifier and infants fed unfortified milk. Bioactivity of the identified peptides was predicted by sequence homology to known bioactive milk peptides. Both total and bioactive peptide abundance and count continuously increased over three hours of gastric digestion. After accounting for infant weight, length, and post-conceptual age, fortification of milk limited the release of peptides from human milk proteins. Peptides that survived further gastric digestion after their initial release were structurally more similar to bioactive peptides than non-surviving peptides. This work is the first to provide a comprehensive profile of milk peptides released during gastric digestion over time, which is an essential step in determining which peptides are most likely to be biologically relevant in the infant.
Project description:Breastfeeding has been associated with long lasting health benefits. Nutrients and bioactive components of human breast milk promote cell growth, immune development, and shield the infant gut from insults and microbial threats. The molecular and cellular events involved in these processes are ill defined. We have established human pediatric enteroids and interrogated maternal milk’s impact on epithelial cell maturation and function in comparison with commercial infant formula. Colostrum applied apically to pediatric enteroid monolayers reduced ion permeability, stimulated epithelial cell differentiation, and enhanced tight junction function by upregulating occludin amount. Breast milk heightened the production of antimicrobial peptide -defensin 5 by goblet and Paneth cells, and modulated cytokine production, which abolished apical release of pro-inflammatory GM-CSF. These attributes were not found in commercial infant formula. Epithelial cells exposed to breast milk elevated apical and intracellular pIgR amount and enabled maternal IgA translocation. Proteomic data revealed a breast milk-induced molecular pattern associated with tissue remodeling and homeostasis. Using a novel ex vivo pediatric enteroid model, we have identified cellular and molecular pathways involved in human milk-mediated improvement of human intestinal physiology and immunity.
Project description:The objective of this study is to investigate the changes of the breast milk proteome from four individual mothers over a six month lactation period by shotgun proteomic techniques, because a comprehensive understanding of the human milk proteome may lead to better understanding of the needs of infants. This may contribute to the improvement of infant formula.
Project description:The majority of babies in the US are formula-fed instead of breast fed. There are major differences in the composition of formulas and breast milk and yet little is known about metabolic differences in babies as the result of feeding these very different diets and how that might affect development or disease risk in later life. One concern is that soy-based formulas might have adverse health effects in babies as a result of the presence of low levels of estrogenic phytochemicals – genistein and daidzein which are normally present in soy beans. In the current study, we used a piglet model to look at this question. Piglets were either fed breast milk from the sow or were fed two different infant formulas (cow’s milk-based or soy-based) from age 2 days to 21 days when pigs are normally weaned onto solid food. Blood glucose and lipids were measured. Formula-fed pigs were found to have lower cholesterol than breast fed piglets and in addition had larger stores of iron in their liver.Microarray analysis was carried out to see if changes in liver gene expression could explain these effects of formula feeding. It was found that overall gene expression profiles were influenced by formula feeding compared to breast fed neonates. Gender-independent and unique effects of formula influenced cholesterol and iron metabolism. Further, soy formula feeding in comparison to milk-based formula failed to reveal any estrogenic actions on hepatic gene expression in either male or female pigs.
Project description:Necrotizing enterocolitis (NEC) is a severe gastrointestinal complication of prematurity. Using small intestinal organoids derived from fetal tissue of a gestational age similar to an extremely preterm infant, this study aims to assess the effect of diet on intestinal epithelial growth and differentiation to elucidate the role nutrition type plays in intestinal development and modifies the risk for NEC. Organoids were cultured for 5 days in growth media and 5 days in differentiation media supplemented 1:40 with four different diets: maternal milk (MM), donor human milk (DHM), standard formula, or extensively hydrolyzed formula. Images were captured daily and organoids were quantified. Organoids were preserved for RNA sequencing and immunofluorescence staining with Ki67, cleaved caspase 3, and chromogranin-A. Media was saved for cytokine/chemokine and growth factor analysis.Human milk supplementation improved growth and differentiation of intestinal organoids generating larger organoids during the growth phase and organoids with longer and wider buds during differentiation compared to formula. Ki67 staining confirmed the proliferative nature of milk-supplemented organoids and chromogranin A staining proved that MM-supplemented organoids induced highest enteroendocrine differentiation. Human milk supplementation also upregulated genes involved in proliferation and promoted a homeostatic immune landscape while those supplemented with formula had a downregulation of cell-cycle-promoting genes and a more inflammatory immune signature. Our results show that MM, and to a lesser extent DHM, support robust intestinal epithelial proliferation and differentiation, suggesting a critical role for factors enriched in human milk in intestinal epithelial health.
Project description:Milk and milk products such as infant formula (IF) play a fundamental role in serving the nutritional needs of the developing infant. Extracellular vesicles (EVs) in human (HM) and cow’s milk (CM) contain molecular cargo such as proteins and micro(mi)RNA that serve as functional messengers between cells and may be of importance to infant health. Here, we have developed a pipeline using advanced proteomics and transcriptomics to enable cross-species comparison of milk and IF EVs. EVs from HM, CM and IF were subjected to data-independent acquisition mass spectrometry and RNA-seq. Differentially abundant proteins (143) and miRNAs (514) (false discovery rate < 0.01) were identified in HM and CM EVs, and CM EV proteins and miRNAs were conserved in IF EVs (~20-90%). We foresee this work to be used in large scale studies to determine biologically relevant species-specific differences in milk EVs that could be leveraged to improve IF products.