Project description:Drought is one of the primary limiting factors affecting the growth and yield of cotton. Studying the genotypic drought response of plant towards stress stimuli necessitates the development of a standardized, comprehensive and cohesive system that specifically captures information regarding the focal purpose. In-house development of drought specific microarray using drought specific oligonucleotide probes was carried out and the leaf and root tissue of the two-important species Gossypium arboreum and Gossypium hirsutum were tested for genetic traits responses under 10 days’ drought stress. Further the response of these tissue under control and drought stress were studied via inhouse developed oligonucleotide chip.
Project description:Purpose: The goal of this experiment was to use RNA-seq to compare the two commercial cotton species Gossypium hirsutum and Gossypium barbadense and determine what transcripts may account for the better fiber quality in the latter. Methods: RNA was extracted from Gossypium barbadense or Gossypium hirsutum fibers at 10, 15, 18, 21, and 28 days post anthesis. Paired-end, 100-bp RNA-seq was performed on an Illumina HiSeq2000 and the reads were mapped to the Gossypium raimondii genome at www.phytozome.net and non-homologous contig assemblies from Gossypium arboreum. Results from RNA-seq were combined with non-targeted metabolomics. Results: Approximately 38,000 transcripts were expressed (RPKM>2) in each fiber type and approximately 2,000 of these transcripts were differentially expressed in a cross-species comparison at each timepoint. Enriched Gene Ontology biological processes in differentially expressed transcripts suggested that Gh fibers were more stressed. Conclusions: Both metabolomic and transcriptomic data suggest that better mechanisms for managing reactive oxygen species contribute to the increased fiber length in Gossypium barbadense. This appears to result from enhanced ascorbate biosynthesis via gulono-1,4-lactone oxidase and ascorbate recycling via dehydroascorbate reductase. See Bioproject PRJNA263926 and SRA accession SRP049330 for study design and raw sequencing data and Bioproject PRJNA269608 and TSA accession GBYK00000000 for Gossypium arboreum assembled contig sequences used for transcriptome mapping - Cotton fiber mRNA from 10,15,18,21 and 28 day post anthesis fiber from either Gossypium hirusutm or Gossypium barbadense was sequenced and differential gene expression analysis was conducted between species for each timepoint and between adjacent timepoints. Each timepoint was representative of fiber from 9 individual plants processed as 3 biological replicate pools (material from 3 individual plants per pool).
Project description:The aim of the present study is to list the genes involved in cotton (G. arboreum) leaf epicuticular wax production and deposition. For this purpose differentially expressed genes (especially, down-regulated in wax deficient mutant plant) in wild and epicuticular wax mutant (Gawm3) plants were founded through cDNA microarray, developed from the wild plant leaves.
Project description:This SuperSeries is composed of the following subset Series: GSE29566: Global gene expression analysis of cotton (Gossypium hirsutum L.) under drought stress in leaf tissue. GSE29567: Global gene expression analysis of cotton (Gossypium hirsutum L.) under drought stress during fibre development stages. Refer to individual Series
Project description:Transcriptome analysis in cotton under drought stress. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out in leaf tissue. Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Leaf samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome.
Project description:Purpose: The goal of this experiment was to use RNA-seq to compare the two commercial cotton species Gossypium hirsutum and Gossypium barbadense and determine what transcripts may account for the better fiber quality in the latter. Methods: RNA was extracted from Gossypium barbadense or Gossypium hirsutum fibers at 10, 15, 18, 21, and 28 days post anthesis. Paired-end, 100-bp RNA-seq was performed on an Illumina HiSeq2000 and the reads were mapped to the Gossypium raimondii genome at www.phytozome.net and non-homologous contig assemblies from Gossypium arboreum. Results from RNA-seq were combined with non-targeted metabolomics. Results: Approximately 38,000 transcripts were expressed (RPKM>2) in each fiber type and approximately 2,000 of these transcripts were differentially expressed in a cross-species comparison at each timepoint. Enriched Gene Ontology biological processes in differentially expressed transcripts suggested that Gh fibers were more stressed. Conclusions: Both metabolomic and transcriptomic data suggest that better mechanisms for managing reactive oxygen species contribute to the increased fiber length in Gossypium barbadense. This appears to result from enhanced ascorbate biosynthesis via gulono-1,4-lactone oxidase and ascorbate recycling via dehydroascorbate reductase.
Project description:Five allotetraploid cotton species have adapted, through their transcriptional responses, to unique environments with distinct levels of inherent abiotic stresses. The transcriptional responses of leaf and root tissue in five allotetraploid cotton species (Gossypium hirsutum, G. barbadense, G. tomentosum, G. mustelinum, and G. darwinii) under salt stress have been investigated in this study using cotton long oligonucleotide microarrays. Physiological responses to salinity such as stomatal conductance, ion and osmoprotectant contents were also measured as indicators of imposed stress. Accessions from these five cotton species were hydroponically grown and gradually introduced to a NaCl treatment (15 dS m-1). The microarray results identified 2721 and 2460 differentially expressed genes under salt stress that were significant in leaf and root tissue, respectively. Many of these genes were classified under gene ontology (GO) categories that suggest abiotic stress. These allotetraploid cottons shared transcriptional responses to salinity, but also showed responses that were species-specific. No consistent differences in transcriptional response among the previously estimated phylogenetic branches were found. Stomatal conductance, ion accumulation, and betaine, trigonelline, and trehalose contents also indicated salt stress. This global assessment of transcriptional and physiological responses to salt stress of these cotton species may identify possible gene targets for crop improvement and evolutionary studies of cotton. Keywords: CEGC Cotton oligo salt stress The transcriptional responses of leaf and root tissue in five allotetraploid cotton species (Gossypium hirsutum, G. barbadense, G. tomentosum, G. mustelinum, and G. darwinii) under salt stress have been investigated in this study using cotton long oligonucleotide microarrays. Physiological responses to salinity such as stomatal conductance, ion and osmoprotectant contents were also measured as indicators of imposed stress. Accessions from these five cotton species were hydroponically grown and gradually introduced to a NaCl treatment (15 dS m-1).
Project description:Comparative analysis of transcriptome profiles of G. arboreum L. cv. and its fuzzy-lintless mutant (ANOI 1960) at 0 and 10 dpa. Cotton is one of the most commercially important fibre crops in the world and used as a source for natural textile fibre and cottonseed oil. The fuzzy-lintless ovules of cotton mutants are ideal source for identifying genes involved in fibre development by comparing with fibre bearing ovules of wild-type. To decipher molecular mechanisms involved in fibre cell development, transcriptome analysis has been carried out by comparing G. arboreum cv. (wild-type) with its fuzzy-lintless mutant (ANOI 1960). Fuzzed-lintless mutant line was generated by back cross breeding between FL and Fl (recurrent parent) lines (personal communication by Dr. I. S. Katageri). Basically Fibre less type was a RIL, first recovered from cross between G.arboreum (linted) and G. anomalum (lint less). This RIL was used as donor parent and crossed with normal arboreum (as recurrent parent) to develop G. arboreum FL and G. arboreum Fl isogenic lines. This G. arboreum Fl line is named as ANOI 1960. Cotton bolls were collected at fibre initiation (0 dpa/days post anthesis) and elongation (10 dpa) and gene expression profiles were analyzed in wild-type and ANOI 1960 mutant using Affymetrix cotton GeneChip Genome array.