Project description:Cotton premature leaf senescence often occurred with an increasing frequency in many cotton growing areas and caused serious reduction in yield and quality of cotton has been one of the impontant factors that restrict severely the production of cotton.Our laboratory studies showed chilling stress is the key factor that induced A. alternatia infection, caused Alternaria disease and then lead to cotton leaf senescence, but the molecular mechanism of cotton premature leaf senscence is still unclear. We used microarrays to study molecular mechanism of chilling stress causing Alternaria alternata infection and leading to cotton leaf senescence and find the key genes during this process.
Project description:We investigated the transcriptional response of invasive B. tabaci B biotype to tomato yellow leaf curl China virus (TYLCCNV) using Illumina sequencing technology. We found that 1,606 genes involved in 157 biochemical pathways were differentially expressed in the viruliferous whiteflies. Culture of B biotype whitefly was maintained on cotton plants. Three thousands of newly emerged adults of whitefly on cotton were released onto the leaves of healthy and viruliferous tobacco plants. They were allowed to feed for 24 h. After that, non-viruliferous and viruliferous whiteflies were transferred respectively to cotton plants in different cages and allowed to feed for 120 h. Then approximately 1,000 non-viruliferous and viruliferous female adults of whitefly were collected, respectively. The RNA was extracted and sequenced using Illunima Analyzer II.
Project description:A comparative study to determine the pepper leaf curl virus resistance machanism between resistant and susceptible genotypes at three leaf stage. To study the molecular mechanism of pepper leaf curl virus (PepLCV) resistance, pepper plants were exposed to PepLCV through artificial inoculation and hybridization on Agilent tomato microarrays. The expression analysis of PepLCV resistant and susceptible genotypes after artificial inoculation at three leaf stage showed that the resistance against PepLCV is due to sum of expression of hundreds of genes at a particular stage.
Project description:Cotton premature leaf senescence often occurred with an increasing frequency in many cotton growing areas and caused serious reduction in yield and quality of cotton has been one of the impontant factors that restrict severely the production of cotton.Our laboratory studies showed chilling stress is the key factor that induced A. alternatia infection, caused Alternaria disease and then lead to cotton leaf senescence, but the molecular mechanism of cotton premature leaf senscence is still unclear. We used microarrays to study molecular mechanism of chilling stress causing Alternaria alternata infection and leading to cotton leaf senescence and find the key genes during this process. Plants were grown in growth chamber with a 14/10 hours photoperiod, 28â/22â. Three-to-four leaves stage cotton plants were pre-treated by chilling stress with the low temperatures of 16/12â day/night for a fixed time length of 3 days. While, the normal growth plants were sustained growing at optimal temperature of 28/20â day/night. And then, both chilling stress pre-treated and normal growth cotton plants were inoculated with Alternaria. alternata isolate A1. The mock inoculations were performed with sterilized water. Cotton leaf Samples were respectively collected at 3, 6 days after inoculation (DAI) for RNA extraction and hybridization on Affymetrix microarrays. To that end, we collected 8 samples, i.e. chilling stress pre-treated cotton leaves: 3 DAI (C) and its mock control (D), 6 DAI (E) and its mock control (F); normal growth cotton leaves: 3 DAI (H) and its mock control (I), 6 DAI (J) and its mock control (K). All samples were arranged in completely randomized designed with three replications for each treatment.
Project description:A comparative study to determine the pepper leaf curl virus resistance machanism between resistant and susceptible genotypes at three leaf stage. To study the molecular mechanism of pepper leaf curl virus (PepLCV) resistance, pepper plants were exposed to PepLCV through artificial inoculation and hybridization on Agilent tomato microarrays. The expression analysis of PepLCV resistant and susceptible genotypes after artificial inoculation at three leaf stage showed that the resistance against PepLCV is due to sum of expression of hundreds of genes at a particular stage. Tomato microarrays consisting of 43,803 probes were used for whole genome expression analysis of chilli peppers for resistance against PepLCV. Transcripts from the leaves of resistant (BS-35) and susceptible plants (IVPBC-535) were compared in response to PepLCV inoculation at three leaf stage.