Project description:[original title] Understanding the complexity of fruit ripening by transcriptome analysis of rin mutant fruit and in silico analysis of promoters of differentially regulated genes A tomato MADS-box transcription factor, LeMADS-RIN, controls fruit ripening and mutation in this gene results in non-ripening phenotype of fruit. This mutation down-regulates certain ripening related ethylene responses, however, other ethylene responses are normal. A complete understanding of this mutation and its effect on fruit transcriptome during ripening is not clear. In this study, microarray analysis has been used to investigate the influence of rin mutation on fruit transcriptome at different stages of ripening. A total of 2,398 genes were found to be differentially expressed in wild type fruit pericarp, which on cluster analysis indicated a major shift in their expression profiles in rin mutant fruit. A total of 1,802 genes were found to be differentially expressed between wild type and rin mutant fruits and 17% of these genes encoded regulatory elements, suggesting that mutation in LeMADS-RIN results in disturbance in the regulatory transcriptional networks during ripening. Since LeMADS-RIN has been reported to bind to the CArG box of LeACS2 promoter, in-silico analysis of 51 putative promoter sequences of the genes, that showed ripening associated up-regulation in wild type but showed impairment in up-regulation in rin mutant fruit during ripening, were searched for presence of CArG box along with ethylene and auxin responsive elements. The study revealed that only 24 putative promoter sequences harbor LeMADS-RIN specific CArG box suggesting an alternative mode of regulation by LeMADS-RIN for CArG box deficient genes. Three chronological stages of tomato (Solanum lycopersicon) fruit ripening were compared between wild type and rin mutant
Project description:To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.
Project description:Pepper(Capsicum annuum L.) fruit development is a complex and genetically programmed process, a comparative study of transcriptome and proteome changes during two varieties of pepper development(IMG, MG, Br and MR) has been carried out by using RNA-Seq and Lable-free quantitation technology.
Project description:[original title] Understanding the complexity of fruit ripening by transcriptome analysis of rin mutant fruit and in silico analysis of promoters of differentially regulated genes A tomato MADS-box transcription factor, LeMADS-RIN, controls fruit ripening and mutation in this gene results in non-ripening phenotype of fruit. This mutation down-regulates certain ripening related ethylene responses, however, other ethylene responses are normal. A complete understanding of this mutation and its effect on fruit transcriptome during ripening is not clear. In this study, microarray analysis has been used to investigate the influence of rin mutation on fruit transcriptome at different stages of ripening. A total of 2,398 genes were found to be differentially expressed in wild type fruit pericarp, which on cluster analysis indicated a major shift in their expression profiles in rin mutant fruit. A total of 1,802 genes were found to be differentially expressed between wild type and rin mutant fruits and 17% of these genes encoded regulatory elements, suggesting that mutation in LeMADS-RIN results in disturbance in the regulatory transcriptional networks during ripening. Since LeMADS-RIN has been reported to bind to the CArG box of LeACS2 promoter, in-silico analysis of 51 putative promoter sequences of the genes, that showed ripening associated up-regulation in wild type but showed impairment in up-regulation in rin mutant fruit during ripening, were searched for presence of CArG box along with ethylene and auxin responsive elements. The study revealed that only 24 putative promoter sequences harbor LeMADS-RIN specific CArG box suggesting an alternative mode of regulation by LeMADS-RIN for CArG box deficient genes.
Project description:Purpose: transcriptome sequencing of Conopomorpha sinensis Methods: high-through Illumina HiSeqTM 2000 Results:66017 transcripts,35383 unigenes Conclusions:This study provided valuable transcriptome data for the litchi fruit borer, which was the first fundamental genomic basis for exploiting gene resources from the litchi fruit borer
Project description:• To dissect how the genes are dynamically and differentially expressed during fruit development in sweet orange, a comprehensive transcriptomic study was performed in a pleiotropic mutant (MT) and its wild type (WT). • The detection of the fruit transcriptomic changes was conducted at five stages of fruit development by deep sequencing; the obtained millions of reliable tags were mapped on orange unigenes and subjected to cluster analysis and functional categorization. Sugar and organic acid contents were determined based on the prediction of differential biological processes. • The global clustering analysis revealed a total of 14 expression patterns for the genes involved in fruit development of sweet orange. More than 94% of the genes showed differential expression during fruit development. Comparative transcripts profiling between WT and MT revealed that between 410 and 634 genes were significantly differentially expressed at the five stages. Functional categorization indicated that TCA cycle, carotenoid biosynthesis, and pentose phosphate pathway (OPP) were among the most regulated pathways. • This study provided a dynamic-view of the transcriptome changes during fruit ripening in sweet orange; the results highlighted a set of molecular processes involved in the formation of the mutation trait in the orange fruits. Investigate the transcriptome changes during five fruit developmental stages of two sweet orange genotypes
Project description:Molecular events regulating apple fruit ripening and sensory quality are largely unknown. Such knowledge is essential for genomic-assisted apple breeding and postharvest quality management. In this study, a parallel transcriptome profile analysis, scanning electron microscopic (SEM) examination and systematic physiological characterization were performed on two apple cultivars, Honeycrisp (HC) and Cripps Pink (CP), which have distinct ripening features and texture attributes. Systematic physiological characterization of fruit ripening based on weekly maturity data indicated substantial differences in fruit crispness and firmness at comparable ripening stages. SEM images of fruit cortex tissues prepared from fruits with equivalent maturity suggested that the cell wall thickness may contribute to the observed phenotypes of fruit firmness and crispness. A high-density long-oligo apple microarray consisting of duplex 190,135 cross-hybridization-free 50-70-mer isothermal probes, and representing 23,997 UniGene clusters, was manufactured on a Nimblegen array platform. Transcriptome profiling identified a total of 1793 and 1209 UniGene clusters differentially expressed during ripening from cortex tissues of HC and CP, respectively. UniGenes implicated in hormone metabolism and response, cell wall biosynthesis and modification and those encoding transcription factors were among the prominent functional groups. Between the two cultivars, most of the identified UniGenes were similarly regulated during fruit ripening; however, a short list of gene families or specific family members exhibited distinct expression patterns between the two cultivars, which may represent candidate genes regulating cultivar-specific apple fruit ripening patterns and quality attributes. Using a single color labeling system, a total of 24 microarray slides were utilized, one for each cortex tissue sample, for transcriptome profiling analysis. 2 cultivars x 3 developmental stages x 4 biological replicates.
Project description:A comparative transcriptome analysis was performed to compare the fruit AZs of the non-shedding E. oleifera variant and from an individual of the same progeny that sheds its ripe fruit normally. The study provides evidence for widespread perturbation to gene expression in the AZ of the non-shedding variant, compared to the normal fruit-shedding control, and allows insight into abscission related functions.
Project description:We performed transcriptome analyses throughout fruit development using the tomato cultivar M82 and its near-isogenic line IL8-3, with interesting and useful traits such as a high content of soluble solids. To identify genes that show differential expression between M82 and IL8-3 fruits, we used a custom microarray containing 43,803 tomato probes. Some genes, such as cell wall invertase and sucrose synthase genes, which are encoded by LIN6 (Solyc10g083290) and TOMSSF (Solyc12g009300) respectively, are well known to play a key role in the sink function of fruit. In this study, the levels of LIN6 and TOMSSF transcripts were higher in IL8-3 than in M82 fruit at 20 and 30 DAF, which are developmental stages for starch accumulation and increased hexose content, respectively, in IL8-3 fruit (Ikeda et al. 2013), and decreased to the level of M82 at ripening stage. Similar patterns were observed in many metabolites of glycolysis and the pentose phosphate pathway as well as metabolites in starch and sucrose metabolism. Gene expressions during fruit development were analyzed. Three biological replicates were prepared for each stage, and a total of 24 samples were analyzed.
Project description:The simultaneous gene fungal-fruit expression at appressoria, quiescence and necrotrophic stages in C. gloeosporioides-tomato fruit interaction were characterized by Illumina NGS. Fungal appressoria stage on green fruit showed stage-specific transcription and was accompanied by massive fruit transcriptional defense response. The quiescent fungal transcriptome showed activation of chromatin remodeling genes while the fruit response continued a highly integrated and massive up-regulation of defense genes. The necrotrophic stage showed a dramatic shift in up-regulation of C. gloeosporioides pathogenicity factors and a susceptive fruit response that shows activation of the salicylic acid pathway culminating in cell death and anthracnose disease. Simultaneous fungal-fruit transcriptome analysis deepens our perception of the unfolding fungal-fruit arms and defenses race.