Project description:BackgroundStreptococcus agalactiae (GBS) is a common pathogen to infect newborn, woman, the elderly, and immuno-compromised human and fish. 37 fish isolates and 554 human isolates of the GBS in 2007-2012 were investigated in serotypes, antibiotic susceptibility, genetic difference and pathogenicity to tilapia.ResultsPCR serotyping determined serotype Ia for all fish GBS isolates and only in 3.2 % (3-4.2 %) human isolates. For fish isolates, all consisted a plasmid less than 6 kb and belonged to ST7 type, which includes mainly pulsotypes I and Ia, with a difference in a deletion at the largest DNA fragment. These fish isolates were susceptible to all antimicrobials tested in 2007 and increased in non-susceptibility to penicillin, and resistance to clindamycin and ceftriaxone in 2011. Differing in pulsotype and lacking plasmid from fish isolates, human serotype Ia isolates were separated into eight pulsotypes II-IX. Main clone ST23 included pulsotypes II and IIa (50 %) and ST483 consisted of pulsotype III. Human serotype Ia isolates were all susceptible to ceftriaxone and penicillin and few were resistant to erythromycin, azithromycin, clindamycin, levofloxacin and moxifloxacine with the resistant rate of 20 % or less. Using tilapia to analyze the pathogenesis, fish isolates could cause more severe symptoms, including hemorrhage of the pectoral fin, hemorrhage of the gill, and viscous black and common scites, and mortality (>95 % for pulsotype I) than the human isolates (<30 %); however, the fish pulostype Ia isolate 912 with deletion caused less symptoms and the lowest mortality (<50 %) than pulsotype I isolates.ConclusionGenetic, pathogenic, and antimicrobial differences demonstrate diverse origin of human and fish serotype Ia isolates. The pulsotype Ia of fish serotype Ia isolates may be used as vaccine strains to prevent the GBS infection in fish.
Project description:Streptococcus agalactiae, also known as Group B streptococcus, emerged in the 1960s as a leading cause of septicemia and meningitis in neonates. It is also an increasing cause of infections in adults with underlying diseases. To characterize regulatory elements in this species we performed a genome-wide transcription start site (TSS) profiling and whole-transcript sequencing. TSS were identified by using a differential RNA-seq strategy, based on selective Tobacco Acid Pyrophosphatase (TAP) treatment and adapter ligation, which differentiates primary transcripts and processed RNAs. The accuracy and sensitivity of TSS identification were increased by combining differential RNA-seq analyses under eight conditions corresponding to variations in growth conditions and genetic backgrounds. Whole-transcript sequencing used a two-step adaptor ligation-based directional RNA-seq protocol and was performed under two experimental conditions with triplicate experiments to assess variations in gene expression in response to an acid stress
Project description:Streptococcus agalactiae frequently colonizes the urogenital tract, and it is a major cause of bacterial septicemia, meningitis, and pneumonia in newborns. For typing purposes, a microarray targeting group B streptococcus (GBS) virulence-associated markers and resistance genes was designed and validated with reference strains, as well as clinical and veterinary isolates. Selected isolates were also subjected to multilocus sequence typing. It was observed that putative typing markers, such as alleles of the alpha-like protein or capsule types, vary independently of each other, and they also vary independently from the affiliation to their multilocus sequence typing (MLST)-defined sequence types. Thus, it is not possible to assign isolates to sequence types based on the identification of a single distinct marker, such as a capsule type or alp allele. This suggests the occurrence of frequent genomic recombination. For array-based typing, a set of 11 markers (bac, alp, pil1 locus, pepS8, fbsB, capsule locus, hylB, abiG-I/-II plus Q8DZ34, pil2 locus, nss plus srr plus rogB2, and rgfC/A/D/B) was defined that provides a framework for splitting the tested 448 S. agalactiae isolates into 76 strains that clustered mainly according to MLST-defined clonal complexes. There was evidence for region- and host-specific differences in the population structure of S. agalactiae, as well as an overrepresentation of strains related to sequence type 17 among the invasive isolates. The arrays and typing scheme described here proved to be a convenient tool for genotyping large numbers of clinical/veterinary isolates and thus might help obtain insight into the epidemiology of S. agalactiae.
Project description:Whole genome sequencing of SYBARIS Aspergillus spp. known to be multi-drug resistant and difficult to treat. Aim of this experiment is to investigate the genetic basis of susceptibility to disease and elucidate molecular mechanisms of drug resistance in these strains.
Project description:As a leading cause of neonatal sepsis, Streptococcus agalactiae, commonly known as Group B Streptococcus, is a major neonatal pathogen. Current global screening practices employ risk- or culture-based protocols for detection of these organisms. In Western Australia (WA), universal culture-based screening is provided, with subsequent intrapartum antibiotic prophylaxis for all S. agalactiae-positive women during labour. Widespread antibiotic exposure is not ideal and this is one of the factors driving development of vaccines against S. agalactiae. Vaccine candidates have focused on the capsule, surface proteins and pilus types, however, capsule serotypes are known to vary geographically. The aim of this study was to use genome sequencing to gain an understanding of the circulating genotypes in WA, and to assess variations in the associated gene pools. We sequenced 141 antenatal carriage (vaginal/rectal) isolates and 10 neonatal invasive disease isolates from WA. Based on the global PubMLST database, the 151 strains were characterised into 30 sequence types, with clustering of these mainly into clonal complexes 1, 12, 17, 19 and 23. Of the genes encoding eleven surface proteins that were analysed, the most prevalent were fbp, lmb and scpB which were present in ≥ 98% of isolates. A cluster of non-haemolytic isolates, one of which was a neonatal invasive disease isolate, appeared to lack the entire cyl locus. Admixture analysis of population structure revealed evidence of genetic transfer among the WA isolates across structural groups. When compared against the PubMLST S. agalactiae data, WA isolates showed high levels of strain diversity with minimal apparent clustering. This is the first whole genome sequence study of WA S. agalactiae isolates and also represents the first addition of Australian isolate data to PubMLST. This report provides insight into the distribution and diversity of vaccine targets of S. agalactiae within Western Australia, indicating that the most appropriate capsular vaccine for this population would be the proposed pentavalent (Cps Ia, Ib, II, III and V) preparation, whilst vaccines targeting surface proteins should ideally utilise Fbp, Lmb and/or ScpB.
Project description:Streptococcus agalactiae or Group B Streptococcus (GBS) is a leading cause of sepsis in neonates. As a preventative measure prophylactic antibiotic administration is common in pregnant women colonised with GBS, but antibiotic-resistance and adverse effects on neonatal microbiomes may result. Use of bacteriophages (phages) is one option for targeted therapy. To this end, four phages (LF1 -LF4) were isolated from wastewater. They displayed lytic activity in vitro against S. agalactiae isolates collected from pregnant women and neonates, with 190/246 isolates (77.2%) and 10/10 (100%) isolates susceptible to at least one phage, respectively. Phage genomes ranged from 32,205-44,768 bp and all phages were members of the Siphoviridae family. High nucleotide identity (99.9%) was observed between LF1 and LF4, which were closely related to a putative prophage of S. agalactiae. The genome organisation of LF2 differed, and it showed similarity to a different S. agalactiae prophage, while LF3 was more closely related to a Streptococcus pyogenes phage. Lysogenic gene presence (integrase, repressor and regulatory modules), was suggestive of temperate phages. In a therapeutic context, temperate phages are not ideal candidates, however, the broad host range activity of these phages observed on clinical isolates in vitro is promising for future therapeutic approaches including bioengineered phage or lysin applications.
Project description:Streptococcus dysgalactiae is an emerging pathogen of fish. Clinically, infection is characterized by the development of necrotic lesions at the caudal peduncle of infected fishes. The pathogen has been recently isolated from different fish species in many countries. Twenty S. dysgalactiae isolates collected from Japan, Taiwan, Malaysia and Indonesia were molecularly characterized by biased sinusoidal field gel electrophoresis (BSFGE) using SmaI enzyme, and tuf gene sequencing analysis. DNA sequencing of ten S. dysgalactiae revealed no genetic variation in the tuf amplicons, except for three strains. The restriction patterns of chromosomal DNA measured by BSFGE were differentiated into six distinct types and one subtype among collected strains. To our knowledge, this report gives the first snapshot of S. dysgalactiae isolates collected from different countries that are localized geographically and differed on a multinational level. This genetic unrelatedness among different isolates might suggest a high recombination rate and low genetic stability.