Project description:Interventions: Phase I Screening and fecal DNA methylation test group:N/A
Primary outcome(s): Detection rate of fecal DNA methylation test in colorectal cancer and precancerous lesions
Study Design: Cross-sectional
Project description:Pivotal trials of SDC2 methylation biomarker test in stool DNA to estimate clinical sensitivity and specificity in detection of colorectal cancer.
Project description:We used Methyl-MiniSeq platform from Zymo Research company to identify genome-wide methylation changes affected by lncRNA H19 knockdown in myotubes. Following H19 knockdown, we observed extensive genome-wide mthylation pattern changes relative to siCon cells, with some genes showing incresed methylation, others showing decreased methylation, and a third group with no significant change. Myotubes differentiated from mouse C3H myoblasts were transfected with either control siRNA or siH19, 48h later, cellular genomic DNA was extracted and subjected to genome-scale DNA methylation mapping using the platform of an improved version of Reduced Representation Bisulfite Sequencing (RRBS).
Project description:We intend to establish an efficient method for plasma cfDNA extraction and Bisulfite transformation to facilitate the detection of DNA methylation status using multiplex fluorescence PCR. Meanwhile, we expect to identify several plasma methylation markers that can be highly sensitive for multi-cancer detection. Finally, we will provide a pan-cancer blood test that is easy to operate, low cost, accurate and easy to promote.
Project description:Cytosine methylation of DNA is a widespread modification of DNA that plays numerous critical roles, yet has been lost many times in diverse eukaryotic lineages. In the yeast Cryptococcus neoformans, CG methylation occurs in transposon-rich repeats and requires the DNA methyltransferase, Dnmt5. We show that Dnmt5 displays exquisite maintenance-type specificity in vitro and in vivo and utilizes similar in vivo cofactors as the metazoan maintenance methylase Dnmt1. Remarkably, phylogenetic and functional analysis revealed that the ancestral species lost the gene for a de novo methylase, DnmtX, between 50-150 MYA. We examined how methylation has persisted since the ancient loss of DnmtX. Experimental and comparative studies reveal efficient replication of methylation patterns in C. neoformans, rare stochastic methylation loss and gain events, and the action of natural selection. We propose that an epigenome has been propagated for >50 MY through a process analogous to Darwinian evolution of the genome.
2020-01-19 | GSE134684 | GEO
Project description:Improved freshwater macroinvertebrate detection from environmental DNA through minimized non-target amplification
Project description:Dicer initiates RNA interference by generating small RNAs involved in various silencing pathways. Dicer participates in centromeric silencing, but its role in the epigenetic regulation of other chromatin domains has not been explored. Here we show that Dicer1 deficiency in Mus musculus leads to decreased DNA methylation, concomitant with increased telomere recombination and telomere elongation. These DNA-methylation defects correlate with decreased expression of Dnmt1, Dnmt3a and Dnmt3b DNA methyltransferases (Dnmts), and methylation levels can be recovered by their overexpression. We identify the retinoblastoma-like 2 protein (Rbl2) as responsible for decreased Dnmt expression in Dicer1-null cells, suggesting the existence of Dicer-dependent small RNAs that target Rbl2. We identify the miR-290 cluster as being downregulated in Dicer1-deficient cells and show that it silences Rbl2, thereby controlling Dnmt expression. These results identify a pathway by which miR-290 directly regulates Rbl2-dependent Dnmt expression, indirectly affecting telomere-length homeostasis. Keywords: Cell type comparison