Project description:HEK293T cells were transfected with the Rbp1-amr or slow (R729H-amr) α-amanitin resistant subunit of RNA Pol II and selected with α-amanitin 24 hours after transfection for additional 24 hours. Total RNA was extracted and global changes in gene expression were determined using microarray chips. MiRNAs are transcribed by RNA pol II but the transcriptional features influencing their synthesis are poorly defined. Here we report that a TATA-box in miRNA and a subset of protein-coding genes is associated with increased sensitivity to a slow rate of transcription elongation. We also show that promoters driven by TATA-box or NF-κB elicit high transcription re-initiation rate, but paradoxically lower levels of miRNA. Interestingly, miRNA synthesis was converted to a more productive mode by decreasing initiation rate, but less productive when the re-initiation rate increased. This phenomenon was found to be associated with a delay in miR-146a induction by NF-κB. We also demonstrate that miRNAs are remarkably strong pause sites. Our findings suggest that lower efficiency of miRNA synthesis directed by the TATA-box or NF-κB is a consequence of frequent transcription initiation that lead to Pol II crowding at pause sites, thereby increasing the chance of collision and premature termination. These findings highlight the importance of the transcription initiation mechanism for miRNA synthesis, and have implications for TATA-box promoters in general. HEK293T cells were transfected with plasmids directing the expression of α-amanitin-resistant variants of Pol II (Rpb1-amr and R749H-amr). α-amanitin was added and RNA was prepared 24 and 48 h later, respectively. The data provided is from 3 Rpb1-amr vs 3 R749H-amr (6 samples).
Project description:HEK293T cells were transfected with the Rbp1-amr or slow (R729H-amr) α-amanitin resistant subunit of RNA Pol II and selected with α-amanitin 24 hours after transfection for additional 24 hours. Total RNA was extracted and global changes in gene expression were determined using microarray chips. MiRNAs are transcribed by RNA pol II but the transcriptional features influencing their synthesis are poorly defined. Here we report that a TATA-box in miRNA and a subset of protein-coding genes is associated with increased sensitivity to a slow rate of transcription elongation. We also show that promoters driven by TATA-box or NF-κB elicit high transcription re-initiation rate, but paradoxically lower levels of miRNA. Interestingly, miRNA synthesis was converted to a more productive mode by decreasing initiation rate, but less productive when the re-initiation rate increased. This phenomenon was found to be associated with a delay in miR-146a induction by NF-κB. We also demonstrate that miRNAs are remarkably strong pause sites. Our findings suggest that lower efficiency of miRNA synthesis directed by the TATA-box or NF-κB is a consequence of frequent transcription initiation that lead to Pol II crowding at pause sites, thereby increasing the chance of collision and premature termination. These findings highlight the importance of the transcription initiation mechanism for miRNA synthesis, and have implications for TATA-box promoters in general.
Project description:Glycoproteomics is likely to identify Mtb virulence factors because glycoproteins on the bacterial cell envelope are used by mycobacteria to enter the primary human host cell, the macrophage. It has been proposed that Mtb interacts with mannose receptors on host cells via mannosylated proteins to enter the macrophages. Despite the vital importance of these proteins in Mtb pathogenesis, our current knowledge of Mtb glycoproteins is still limited, and only a few secreted and cell wall-associated glycoproteins have to date been described. Previous studies have used laboratory strains as model systems to study glycosylation in Mtb. However, only a few sub-groups within the genetically conserved MTBC appear to cause extensive outbreaks with different clinical presentation and AMR. In this study, we employed qualitative and quantitative mass spectrometry and bioinformatics to explore the glycoproteomic patterns of clinical isolates from four lineages of the MTBC, lineages 3, 4, 5 and 7, to investigate the role of protein glycosylation in Mtb adaptation, survival and AMR.