Project description:RNA sequencing (RNA-seq) of phage infected bacterial cultures offers a snapshot of transcriptional events occurring during the infection process, providing insights into the phage transcriptional organization as well as the bacterial response. To better mimic real environmental contexts, we performed RNA-seq of P. aeruginosa PAO1 cultures infected with phage LUZ19 in a mammalian cell culture medium (MCCM) to better simulate a phage therapy event, and the data were compared to LB medium. Regardless of the media, phage LUZ19 induces significant transcriptional changes in the bacterial host over time, particularly during early infection (t= 5 min) and gradually shuts down bacterial transcription. In a common response in both media, 56 P. aeruginosa PAO1 genes are differentially transcribed and clustered into several functional categories such as metabolism, translation and transcription. Our data allowed us to tease apart a medium-specific response during infection from the identified infection-associated responses. This reinforces the concept that phages overtake bacterial transcriptome in a strict manner to gain control of the bacterial machinery and reallocate resources for infection, in this case overcoming the nutritional limitations of the mammalian cell culture medium. From a phage therapy perspective, this study contributes towards a better understanding of phage-host interaction in human physiological conditions and demonstrates the versatility of phage LUZ19 to adapt to different environments.
Project description:HEK293T cells were transfected with the Rbp1-amr or slow (R729H-amr) α-amanitin resistant subunit of RNA Pol II and selected with α-amanitin 24 hours after transfection for additional 24 hours. Total RNA was extracted and global changes in gene expression were determined using microarray chips. MiRNAs are transcribed by RNA pol II but the transcriptional features influencing their synthesis are poorly defined. Here we report that a TATA-box in miRNA and a subset of protein-coding genes is associated with increased sensitivity to a slow rate of transcription elongation. We also show that promoters driven by TATA-box or NF-κB elicit high transcription re-initiation rate, but paradoxically lower levels of miRNA. Interestingly, miRNA synthesis was converted to a more productive mode by decreasing initiation rate, but less productive when the re-initiation rate increased. This phenomenon was found to be associated with a delay in miR-146a induction by NF-κB. We also demonstrate that miRNAs are remarkably strong pause sites. Our findings suggest that lower efficiency of miRNA synthesis directed by the TATA-box or NF-κB is a consequence of frequent transcription initiation that lead to Pol II crowding at pause sites, thereby increasing the chance of collision and premature termination. These findings highlight the importance of the transcription initiation mechanism for miRNA synthesis, and have implications for TATA-box promoters in general. HEK293T cells were transfected with plasmids directing the expression of α-amanitin-resistant variants of Pol II (Rpb1-amr and R749H-amr). α-amanitin was added and RNA was prepared 24 and 48 h later, respectively. The data provided is from 3 Rpb1-amr vs 3 R749H-amr (6 samples).
Project description:To better understand host/phage interactions and the genetic bases of phage resistance in a model system relevant to potential phage therapy, we isolated several spontaneous mutants of the USA300 S. aureus clinical isolate NRS384 that were resistant to phage K. Six of these had a single missense mutation in the host rpoC gene, which encodes the RNA polymerase beta prime subunit. To examine the hypothesis that the mutations in the host RNA polymerase affect the transcription of phage genes, we performed RNA-seq analysis on total RNA samples collected from NRS384 wild-type (WT) and rpoC G17D mutant cultures infected with phage K, at different time points after infection. Infection of the WT host led to a steady increase of phage transcription relative to the host. Our analysis allowed us to define different early, middle, and late phage genes based on their temporal expression patterns and group them into transcriptional units. Predicted promoter sequences defined by conserved -35, -10, and in some cases extended -10 elements were found upstream of early and middle genes. However, sequences upstream of late genes did not contain clear, complete, canonical promoter sequences, suggesting that factors in addition to host RNA polymerase are required for their regulated expression. Infection of the rpoC G17D mutant host led to a transcriptional pattern that was similar to the WT at early time points. However, beginning at 20 minutes after infection, transcription of late genes (such as phage structural genes and host lysis genes) was severely reduced. Our data indicate that the rpoCG17D mutation prevents the expression of phage late genes, resulting in a failed infection cycle for phage K. In addition to illuminating the global transcriptional landscape of phage K throughout the infection cycle, these studies can inform our investigations into the bases of phage K’s control of its transcriptional program as well as mechanisms of phage resistance.
Project description:Phage therapy is a promising adjunct therapeutic approach against bacterial multidrug-resistant infections, including Pseudomonas aeruginosa-derived infections. Nevertheless, the current knowledge about the phage-bacteria interaction within a human environment is limited. In this work, we performed a transcriptome analysis of phage-infected P. aeruginosa adhered to a human epithelium (Nuli-1 ATCC® CRL-4011™). To this end, we performed RNA-sequencing from a complex mixture comprising phage–bacteria–human cells at early, middle, and late infection and compared it to uninfected adhered bacteria. Overall, we demonstrated that phage genome transcription is unaltered by bacterial growth and phage employs a core strategy of predation through upregulation of prophage-associated genes, a shutdown of bacterial surface receptors, and motility inhibition. In addition, specific responses were captured under lung-simulating conditions, with the expression of genes related to spermidine syntheses, sulfate acquisition, spermidine syntheses, biofilm formation (both alginate and polysaccharide syntheses), lipopolysaccharide (LPS) modification, pyochelin expression, and downregulation of virulence regulators. These responses should be carefully studied in detail to better discern phage-induced changes from bacterial responses against phage. Our results establish the relevance of using complex settings that mimics in vivo conditions to study phage-bacteria interplay, being obvious the phage versatility on bacterial cell invasion.