Project description:The genomic DNAs of strains JPCM5 and 263 of L. infantum, strains LV39 and Friedlin of L. major and strains Parrot-TarII and S125 of L. tarentolae were used in comparative genomic hybridizations to reveal the intra-species and inter-species gene content, and to validate L. tarentolae Parrot-TarII genome sequencing results. Leishmania (Sauroleishmania) tarentolae was first isolated in the lizard Tarentola mauritanica. This species is not known to be pathogenic to humans but is often used as a model organism for molecular analyses or protein overproduction. The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved by high-throughput sequencing technologies. The L. tarentolae genome was first assembled de novo and then aligned against the reference L. major Friedlin genome to facilitate contig positioning and annotation, providing a 23-fold coverage of the genome. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described, and it provides an opportunity for comparison with the completed genomes of the pathogenic Leishmania species. A high synteny was observed in de novo assembled contigs between all sequenced Leishmania species. A number of limited chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic with L. major. Globally, over 90% of the L. tarentolae gene content was shared with the other Leishmania species. There were 250 L. major genes absent from L. tarentolae, and interestingly these missing genes were primarily expressed in the intracellular amastigote stage of the pathogenic parasites. This implies that L. tarentolae may have impaired ability to survive as an intracellular parasite. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the leishmanolysin (GP63) and a gene related to the promastigote surface antigen (PSA31C). Overall, L. tarentolae appears to have a gene content more adapted to the insect stage rather than the mammalian one. This may partly explain its inability to replicate within mammalian macrophages and its suspected preferred life style as promastigote in the lizards.
Project description:Drug resistance is a major public health challenge in Leishmaniasis chemotherapy, particularly in the case of emerging Leishmania/HIV-1 co-infections. Recently, we have delineated the mechanism of cell death induced by the HIV-1 protease inhibitor, Nelfinavir, in the Leishmania parasite. In order to investigate the underlying molecular mechanism involved in Nelfinavir resistance, in vitro Nelfinavir resistant amastigotes were developed by direct drug pressure in culture. RNA expression profiling analyses of closely related Leishmania species were used as a screening tool to compare Nelfinavir-resistant and -sensitive parasites in order to identify candidate genes involved in drug resistance, and several genes were found to be differentially expressed. Comparative gene hybridization (CGH) analyses of Nelfinavir-resistant and -sensitive Leishmania using whole-genome 60-mer oligonucleotide microarrays were also carried out. RNA expression profiles and the CGH of Nelfinavir resistant vs sensitive Leishmania amastigotes suggest that parasites regulate mRNA levels either by modulating gene copy numbers through chromosome aneuploidy, or gene deletion/duplication by homologous recombination. Interestingly, supernumerary chromosomes 6 and 11 in the resistant parasites lead to upregulation of the ABC class of transporters, which are involved in vesicular trafficking. Transporter assays using radiolabeled Nelfinavir suggest that the drug accumulates in greater amounts in the resistant parasites and in a time dependent manner. Furthermore, high-resolution electron microscopy showed an increased number of vacuoles in Nelfinavir-resistant parasites. Together these results suggest that Nelfinavir is rapidly and dramatically sequestered in these intracellular vesicles.
Project description:Drug resistance is a major public health challenge in Leishmaniasis chemotherapy, particularly in the case of emerging Leishmania/HIV-1 co-infections. Recently, we have delineated the mechanism of cell death induced by the HIV-1 protease inhibitor, Nelfinavir, in the Leishmania parasite. In order to investigate the underlying molecular mechanism involved in Nelfinavir resistance, in vitro Nelfinavir resistant amastigotes were developed by direct drug pressure in culture. RNA expression profiling analyses of closely related Leishmania species were used as a screening tool to compare Nelfinavir-resistant and -sensitive parasites in order to identify candidate genes involved in drug resistance, and several genes were found to be differentially expressed. Comparative gene hybridization (CGH) analyses of Nelfinavir-resistant and -sensitive Leishmania using whole-genome 60-mer oligonucleotide microarrays were also carried out. RNA expression profiles and the CGH of Nelfinavir resistant vs sensitive Leishmania amastigotes suggest that parasites regulate mRNA levels either by modulating gene copy numbers through chromosome aneuploidy, or gene deletion/duplication by homologous recombination. Interestingly, supernumerary chromosomes 6 and 11 in the resistant parasites lead to upregulation of the ABC class of transporters, which are involved in vesicular trafficking. Transporter assays using radiolabeled Nelfinavir suggest that the drug accumulates in greater amounts in the resistant parasites and in a time dependent manner. Furthermore, high-resolution electron microscopy showed an increased number of vacuoles in Nelfinavir-resistant parasites. Together these results suggest that Nelfinavir is rapidly and dramatically sequestered in these intracellular vesicles.
Project description:Murine bone marrow derived macrophages were infected with Leishmania major or Leishmania donovania promastigotes, allowed to phagocytose latex beads or not treated. Gene expression profiles were compared to identify i) the effect of Leishmania infection; ii) the differences in effects between L. major and L. donovani; and iii) the effect of pahgocytosis of latex beads.
Project description:The genomic DNAs of strains JPCM5 and 263 of L. infantum, strains LV39 and Friedlin of L. major and strains Parrot-TarII and S125 of L. tarentolae were used in comparative genomic hybridizations to reveal the intra-species and inter-species gene content, and to validate L. tarentolae Parrot-TarII genome sequencing results. Leishmania (Sauroleishmania) tarentolae was first isolated in the lizard Tarentola mauritanica. This species is not known to be pathogenic to humans but is often used as a model organism for molecular analyses or protein overproduction. The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved by high-throughput sequencing technologies. The L. tarentolae genome was first assembled de novo and then aligned against the reference L. major Friedlin genome to facilitate contig positioning and annotation, providing a 23-fold coverage of the genome. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described, and it provides an opportunity for comparison with the completed genomes of the pathogenic Leishmania species. A high synteny was observed in de novo assembled contigs between all sequenced Leishmania species. A number of limited chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic with L. major. Globally, over 90% of the L. tarentolae gene content was shared with the other Leishmania species. There were 250 L. major genes absent from L. tarentolae, and interestingly these missing genes were primarily expressed in the intracellular amastigote stage of the pathogenic parasites. This implies that L. tarentolae may have impaired ability to survive as an intracellular parasite. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the leishmanolysin (GP63) and a gene related to the promastigote surface antigen (PSA31C). Overall, L. tarentolae appears to have a gene content more adapted to the insect stage rather than the mammalian one. This may partly explain its inability to replicate within mammalian macrophages and its suspected preferred life style as promastigote in the lizards. Six strains of three Leishmania species were hybridizated to 12 microarrays, each with four biological replicates (independent cultures). Supplementary file: Represents final results obtained after statistical analysis of all replicates.
Project description:Leishmaniasis is a disease caused by the protozoan parasite Leishmania known to affect millions of individuals worldwide. In recent years, we have established the critical role played by Leishmania zinc-metalloprotease GP63 in the modulation of host macrophage signaling and functions, favouring its survival and progression within its host. Leishmania major lacking GP63 was reported to cause limited infection in mice, however it is still unclear how GP63 may influence the innate inflammatory response and parasite survival in an in vivo context. Therefore, we were interested in analyzing the early innate inflammatory events upon Leishmania inoculation within mice and establish whether Leishmania GP63 influences this initial inflammatory response. Experimentally, L. major WT, L. major GP63 KO or L. major GP63 rescue were intraperitoneally inoculated in mice and inflammatory cells recruited were characterized microscopically and by flow cytometry (number and cell type), and their infection determined. Pro-inflammatory markers such as cytokines, chemokines and extracellular vesicles (EVs, e.g. exosomes) were monitored and proteomic analysis was performed on exosome contents. Data obtained from this study suggest that Leishmania GP63 does not significantly influence the pathogen-induced inflammatory cell recruitment, but rather their activation status and effector function. Concordantly, internalization of promastigotes during early infection could be influenced by GP63 as less L. major KO amastigotes were found within host cells and appear to maintain in host cells over time. Collectively this study provides a clear analysis of innate inflammatory events occurring during L. major infection and further establish the prominent role of the virulence factor GP63 to provide favorable conditions for host cell infection.
Project description:Drug resistance is a major public health challenge in Leishmaniasis chemotherapy, particularly in the case of emerging Leishmania/HIV-1 co-infections. Recently, we have delineated the mechanism of cell death induced by the HIV-1 protease inhibitor, Nelfinavir, in the Leishmania parasite. In order to investigate the underlying molecular mechanism involved in Nelfinavir resistance, in vitro Nelfinavir resistant amastigotes were developed by direct drug pressure in culture. RNA expression profiling analyses of closely related Leishmania species were used as a screening tool to compare Nelfinavir-resistant and -sensitive parasites in order to identify candidate genes involved in drug resistance, and several genes were found to be differentially expressed. Comparative gene hybridization (CGH) analyses of Nelfinavir-resistant and -sensitive Leishmania using whole-genome 60-mer oligonucleotide microarrays were also carried out. RNA expression profiles and the CGH of Nelfinavir resistant vs sensitive Leishmania amastigotes suggest that parasites regulate mRNA levels either by modulating gene copy numbers through chromosome aneuploidy, or gene deletion/duplication by homologous recombination. Interestingly, supernumerary chromosomes 6 and 11 in the resistant parasites lead to upregulation of the ABC class of transporters, which are involved in vesicular trafficking. Transporter assays using radiolabeled Nelfinavir suggest that the drug accumulates in greater amounts in the resistant parasites and in a time dependent manner. Furthermore, high-resolution electron microscopy showed an increased number of vacuoles in Nelfinavir-resistant parasites. Together these results suggest that Nelfinavir is rapidly and dramatically sequestered in these intracellular vesicles. Two condition experiment: NFV-sensitive vs resistant. Biological replicates: Three. One dye swap.
Project description:This SuperSeries is composed of the following subset Series: GSE9947: Transcriptional analysis of Leishmania infantum methotrexate resistant strains using full-genome DNA microarrays GSE9948: Transcriptional analysis of Leishmania major methotrexate resistant strains using full-genome DNA microarrays Keywords: SuperSeries Refer to individual Series
Project description:Some T's in nuclear DNA of trypanosomes and Leishmania are hydroxylated and glucosylated to yield base J (β-D-glucosyl-hydroxymethyluracil). In Leishmania about 99% of J is located in telomeric repeats. We show here that most of the remaining J is located at chromosome-internal RNA Polymerase II termination sites. Both this internal J and telomeric J can be reduced by a knockout of J-binding protein 2 (JBP2), an enzyme involved in the first step of J biosynthesis. J levels are further reduced by growing Leishmania JBP2 knockout cells in BrdU-containing medium, resulting in cell death. The loss of internal J is accompanied by massive read-through at RNA Polymerase II termination sites. The degree of read-through varies between transcription units, but may extend over 100 kb. We conclude that J is required for proper transcription termination and infer that the absence of internal J kills Leishmania by massive read-through of transcriptional stops.