Project description:A laboratory colony of Phlebotomus perniciosus sand flies was maintained. Sand flies were infected with cultured Leishmania infantum promastigotes in stationary phase. Ten infected sand flies were dissected after 5 days and promastigotes within the gut pooled. The cells were immediately washed in PBS once and lysed in TRIzol reagent (Life Technologies). RNA isolation was completed according to the manufacturer's instructions, obtaining 63ng. RNA-seq libraries were generated using the spliced leader sequence for second strand synthesis (Cuypers et al., 2017; Haydock et al., 2015), thus allowing for specific amplification of sequences from L. infantum promastigotes, thus avoiding contamination with material from the sand fly gut. Single-end sequencing was performed in an Illumina HiSeq2500 instrument and data analysis was conducted using bowtie2, samtools, featureCounts and Geneious. The main findings are: i) substantial differences in differential gene expression between sand fly-derived (sfPro) and cultured (acPro) promastigotes; and ii) over-expression of genes involved in metacyclogenesis in sfPro vs. acPro, including gp63 genes, autophagy genes, etc.
Project description:Human T-cell leukemia virus type 1 (HTLV-1) is linked to the development of adult T-cell leukemia (ATL) and the neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax oncoprotein regulates viral gene expression and the NF-kB pathway to promote the survival of HTLV-1 infected T cells. In thsi study, we utilize a kinome-wide shRNA screen to identify the tyrosine kinase KDR/VEGFR2 as an essential survival factor of HTLV-1-transformed T cells. Inhibition of KDR induces apoptosis of Tax expressing HTLV-1-transformed cell lines and CD4+ T cells from HAM/TSP patients. Phosphoproteomics analysis of HTLV-1 transformed cells treated with a KDR inhibitor revealed inhibition of the phosphorylation of multiple receptors/cell surface proteins, ubiquitin conjugating systems, proteases, phosphatases, apoptotic regulatory factors, adhesion/extracellular matrix proteins and viral proteins. This work suggests that HTLV-1 Tax has hijacked KDR kinase activity to promote Tax stability and the proliferation and survival of HTLV-1 infected cells.
Project description:Purpose: Using NGD techinque to profile the gene expression in KDR+ hematopietic progenitor cells (HPC) and KDR- HPC during tumor progression. The goal is to study how KDR signaling within hematopieosis respond to tumor progression by analyzing transcriptome of KDR+ HPC Method: Isolate KDR + HPC and KDR- HPC from late stage GL261 tumor mice, and HPC from non tumor mice. Compare their transcriptomes.by deep sequencing, in triplicate. The sequence reads that passed quality filters were analyzed at the transcript isoform level with TopHat followed by Cufflinks. Results: Basedl analysis of transcirptome and expression pattern of 11650 genes, KDR+ HPC resprent a different population compared with KDR- HPC in tumor mice or HPC in non-tumor mice.
Project description:The debilitating disease kala-azar or visceral leishmaniasis (VL) is caused by the kinetoplastid protozoan parasite Leishmania donovani. The parasite is transmitted by the hematophagous sandfly vector of the genus Phlebotomus in the old world and Lutzomyia in the new world. The predominant Phlebotomine species associated with transmission of kala-azar are Phlebotomus papatasi and Phlebotomus argentipes. The infected female sandfly transmits the parasite when it takes a blood meal. Understanding the molecular interaction of the sand fly-Leishmania during the development of parasite within the gut of the sandfly is crucial to understanding parasite life cycle. The complete genome sequences of sandfly vectors (Phlebotomus and Lutzomyia) are currently not available and sequencing efforts are underway. Non-availability of genome sequence can hamper identification of proteins in the sandfly vector. In the present study we have carried out proteogenomic analysis of unsequenced sandfly vector P. paptasi cell line using high-resolution mass spectrometry and comparative homology-based searches using related dipteran protein data (mosquitoes and fruit fly). This study resulted in identification of 1,312 proteins from P. papatasi based on homology. Our study demonstrates the power of proteogenomic approaches in mapping the proteomes of unsequenced organisms.
Project description:Sand flies are blood-feeding insects and vectors of the Leishmania parasite. For many years, saliva of these insects has represented a gold mine for the discovery of molecules with anti-hemostatic and immuno-modulatory activities. Furthermore, proteins in sand fly saliva have been shown to be a potential vaccine against leishmaniasis and also markers of vector exposure. A bottleneck to progress in these areas of research has been the identification of molecules responsible for the observed activities and properties of saliva. Over the past decade, rapid advances in transcriptomics and proteomics resulted in the completion of a number of sialomes (salivary gland transcriptomes) and the expression of several recombinant salivary proteins from different species of sand fly vectors. This review will provide readers with a comprehensive update of recent advances in the characterization of these salivary molecules and their biological activities and offer insights pertaining to their protective effect against leishmaniasis and their potential as markers of vector exposure.
Project description:We isolated 17 viral strains capable of causing cytopathic effects in mammalian cells and death in neonatal mice from sand flies in China. Phylogenetic analysis showed that these strains belonged to the genus Phlebovirus. These findings highlight the need to control this potentially emerging virus to help safeguard public health.
Project description:Influence of diet and neuronal clk (clock) activity on hemolymph proteomics. We have shown that as photoreceptors die (in the fly) they necrose, which results in their intercellular contents leaking into the hemolymph. We hypothesize that this process is regulated by diet and circadian clock control.
Analysis of differential protein expression in the hemolymph from flies reared on a high protein diet. Comparison of flies with and without a functional circadian clock within their photoreceptors.
Species/Strain: Drosophila, Elav-GeneSwitch-GAL4>UAS-Clk-DN1 (+/- RU486), female