Project description:long-read CAGE was design to identify full length capped transcript across 10 specific loci in cortical neurones. Long-read CAGE was based on the Cap-Trapper method with the full length cDNA sequencing using ONT MinION sequencer. After RNA extraction, 10 µg total RNAs from Human iPS (WTC-11) cells, differentiated neural stem cells and differentiated cortical neuron cells were polyadenylated with E-coli poly(A) Polymerase (PAP) (NEB M0276) at 37°C for 15 min and purified with AMPure RNA Clean XP beads. The PAP treated 5 µg RNA was reverse transcribed with oligodT_16VN_UMI25_primer (GAGATGTCTCGTGGGCTCGGNNNNNNNNNNNNNNNNNNNNNNNNNCTACGTTTTTTTTTTTTTTTTVN) and Prime Script II Reverse Transcriptase (Takara Bio) at 42°C for 60 min and purified with RNAClean XP beads. Cap-trapping from the RNA/cDNA hybrids was performed with published protocol (Takahashi et al., Nature protocols, 2012 (https://doi.org/10.1038/nprot.2012.005)), and RNA was digested with RNase H (Takara Bio) at 37°C for 30 min and purified with AMPureXP beads. 5’ linker (N6 up GTGGTATCAACGCAGAGTACNNNNNN-Phos, GN5 up GTGGTATCAACGCAGAGTACGNNNNN-Phos, down Phos-GTACTCTGCGTTGATACCAC-Phos) was ligated to the cDNA with Mighty Mix (Takara Bio) for overnight and the ligated cDNA was purified with AMPure XP beads. Shrimp Alkaline Phosphatase (Takara Bio) was used to remove phosphates at the ligated linker and purified with AMPureXP beads. The 5’ linker ligated cDNA was then second strand synthesized with KAPA HiFi mix (Roche) and 2nd synthesis primer_UMI15 at 95°C for 5 min, 55°C for 5 min and 72°C for 30 min. Exonuclease I (Takara Bio) was added for the primer digestion at 37°C for 30 min, and the cDNA/DNA hybrid was purified with AMPureXP and amplified with PrimerSTAR GXL DNA polymerase (Takara Bio) and PCR primer (fwd_CTACACTCGTCGGCAGCGTC, rev _GAGATGTCTCGTGGGCTCGG) for 7 cycles. The library was then treated with SQK-LSK110 (Oxford Nanopore Technologies) with manufacture’s protocol and sequenced with R9.4 flowcell (FLO-MIN106) in MinION sequencer. Basecalling was processed by Guppy v5.0.14 basecaller software provided by Oxford Nanopore Technologies to generate fastq files from FAST5 files. To prepare clean reads from fastq files, adapter sequence was trimmed by pychopper (https://github.com/nanoporetech/pychopper) with VNP_GAGATGTCTCGTGGGCTCGGNNNNNNNNNNNNNNNCTACG and SSP_ CTACACTCGTCGGCAGCGTCNNNNNNNNNNNNNNNNNNNNNNNNNGTGGTATCAACGCAGAGTAC and the fastq was mapped on our target genes.
Project description:Whole-genome bisulfite sequencing (WGBS) is currently the gold standard for DNA methylation (5-methylcytosine, 5mC) profiling, however the destructive nature of sodium bisulfite results in DNA fragmentation and subsequent biases in sequencing data. Such issues have led to the development of bisulfite-free methods for 5mC detection. Nanopore sequencing is a long read non-destructive approach that directly analyzes DNA and RNA fragments in real time. Recently, computational tools have been developed that enable base-resolution detection of 5mC from Oxford Nanopore sequencing data. In this chapter we provide a detailed protocol for preparation, sequencing, read assembly and analysis of genome-wide 5mC using Nanopore sequencing technologies.
2021-12-03 | GSE179673 | GEO
Project description:Sequencing runs of M13 and lambda obtained using Oxford Nanopore Technologies' MinION sequencer
Project description:Purpose: To generate a reference long-read transcriptomic data set for use in developing new analysis pipelines and comparing their performance with existing methods. Synthetic “sequin” RNA standards (Hardwick et al. 2016) were sequenced using the Oxford Nanopore Technologies (ONT) GridION platform.
Project description:Transgenic plants carrying an estradiol-inducible ROS1-YFP construct (XVE:ROS1-YFP) were subjected to long-read sequencing (Oxford Nanopore Technologies) to assess the global impacts of ROS1 activity on the methylome of Arabidopsis thaliana (ecotype Col-0).
Project description:S. meliloti strains with a bi- and monopartite genome configuration were constructed by consecutive Cre/lox-mediated site-specific fusions of the secondary replicons. Beside the correct genomic arrangements, these strains and precursors were tested for variations in the nucleotide sequence. Futher, a marker fequency analysis was performed to test if replication is initiated at all origins and to determine the replication termination regions of the triple replicon fusion molecule. To gain the sequence data for these analyses, respective strains were applied to whole genome sequencing using an Illumina MiSeq-System and Oxford Nanopore (MinION) sequencing technology.
Project description:Osteosarcoma is the most common primary bone cancer in children, adolescents and young adults. It is a rare cancer type. To comprehensively reveal the transcriptomic characteristics of osteosarcoma, we performed Oxford Nanopore Technologies (ONT) long-read RNA-Seq of tumor and adjacent normal tissues from 23 patients with osteosarcoma.