Project description:GCMS datasets for the soil depth manuscript
Abstract
Two factors that are well-known to influence soil microbiomes include the depth of the soil as well as the level of moisture. Previous works have demonstrated that climate change will increase the incidence of drought in soils, but it is unknown how fluctuations in moisture availability affect soil microbiome composition and functioning down the depth profile. Here, we investigated soil and wheatgrass rhizosphere microbiomes in a common field setting under four different irrigation regimes and three depths. We demonstrated that there is a significant interactive effect, where fluctuations in soil moisture more strongly influence soil microbiomes at the surface layer than in deeper layers, including for soil community composition, diversity, and for functional profiles. Meanwhile, in rhizosphere communities the influence of irrigation was similar across the different depths, although there were slight discrepancies between the two cultivars of wheatgrass used. The lessened response of deeper soil microbiomes to changes in irrigation may be due to higher incidence of slow-growing, stress-resistant microbes.
Project description:Roots make the first contact with the soil environment and are the first responders of stress. These root behaviors are quantifiable and adaptive. The response of rice varieties in mechanical and salinity stress was measured in a novel experimental setup that mimics the soil environment. We analyzed the response of roots by means of SAC (Stress Adaptation Coefficient) in 28 rice varieties that include high-yield salt tolerant varieties as well as geographically isolated native rice varieties. cDNA microarray of IR64 root-tip shows about 6000 common transcripts to be differentially regulated among the two stresses and common pathways were identified. Overall, our study indicates that there is an important commonality in the molecular basis of salt and mechanical stress and presents an easy-to-perform early establishment stress screen for rice varieties.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Sorghum bicolor is one of the most important cereal crops in the world, predominantly grown in sub‑Saharan Africa by smallholder farmers. Despite its outstanding resilience to abiotic stresses, approximately 20% of sorghum yield is annually lost on the African continent due to infestation with the parasitic weed Striga hermonthica. Existing Striga management strategies to decrease Striga infestation often show low efficiency and are not easily integrated into current agricultural practices. Microbial-based solutions may prove an effective, low-cost mode for reducing Striga parasitism in sub-Saharan Africa. Here, we demonstrate that the microbiome component of a field soil suppresses Striga infection of sorghum. Potential mechanisms underlying the soil microbiome’s influence on the host plant include root endodermal suberization and aerenchyma formation. Moreover, we observed a depletion of haustorium inducing factors, compounds essential for Striga to establish the host-parasite association, in root exudates collected from sorghum grown in the presence of the soil microbiome as compared to sterile conditions. We further identified individual microbial taxa associated with reduced Striga infection via changes in root cellular anatomy and differentiation as well as in exudate composition. Our study identifies a suite of traits that can be harnessed by individual microbial isolates or their consortia to induce Striga resistance. Combining microbes that elicit Striga resistance directly (affecting the parasite) via repression of haustorium formation with those that act indirectly (affecting the host), by reducing of Striga penetration through root tissue, can broaden the effectiveness of microbe-induced protection from Striga.
Project description:Salt stress is one of the abiotic stresses that adversely affect plant growth and agricultural productivity all over the word. Root is the organ that immediately suffers salt stress in soil, and thus the ability of roots to adapt to high salinity is critical for salt stress tolerance in plants. During a long-term evolution, plants have developed a variety of strategies to respond to salt stress. The mechanisms of salt stress response are complicated and are stilly largely unknown. In this study, through the screening of Arabidopsis mutants that are sensitive to salt stress, we identified a mutant itpk4, that displayed reduced root growth, reduced seeds germination, and increased root hairs under salt stress compared with wild type plants. in future, the molecular mechanism underlying the role of ITPK4 in root elongation under high.
Project description:Fire disturbances are becoming more common, more intense, and further-reaching across the globe, with consequences for ecosystem functioning. Importantly, fire can have strong effects on the soil microbiome, including community and functional changes after fire, but surprisingly little is known regarding the role of soil fire legacy in shaping responses to recent fire. To address this gap, we conducted a manipulative field experiment administering fire across 32 soils with varying fire legacies, including combinations of 1-7 historic fires and 1-33 years since most recent fire. We analyzed soil metatranscriptomes, determining for the first time how fire and fire legacy interactively affect metabolically-active soil taxa, the microbial regulation of important carbon (C), nitrogen (N) and phosphorus (P) cycling, expression of carbohydrate-cycling enzyme pathways, and functional gene co-expression networks. Experimental fire strongly downregulated fungal activity while upregulating many bacterial and archaeal phyla. Further, fire decreased soil capacity for microbial C and N cycling and P transport, and drastically rewired functional gene co-expression. Perhaps most importantly, we highlight a novel role of soil fire legacy in regulation of microbial C, N, and P responses to recent fire. We observed a greater number of functional genes responsive to the interactive effects of fire and fire legacy than those affected solely by recent fire, indicating that many functional genes respond to fire only under certain fire legacy contexts. Therefore, without incorporating fire legacy of soils, studies will miss important ways that fire shapes microbial roles in ecosystem functioning. Finally, we showed that fire caused significant downregulation of carbon metabolism and nutrient cycling genes in microbiomes under abnormal soil fire histories, producing a novel warning for the future: human manipulation of fire legacies, either indirectly through global change-induced fire intensification or directly through fire suppression, can negatively impact soil microbiome functional responses to new fires.
Project description:Salt stress caused by soil salination inhibits plant growth and development that result in reduction of crop yield and threaten the food security. Several spliceosome components are considered to modify salt stress responses in plants. However, the molecular basis of spliceosome proteins adjustment to salt stress is still unclear. Here we report that an Sm core protein SmEb is required for salt tolerance in Arabidopsis. In addition, SmEb controls alternative splicing of hundreds of pre-mRNA to participate in plant response to salt stress. Our results further reveal that SmEb takes effect on maintain proper ratio of two RCD1 splicing variants to adjust to H2O2 accumulation under salt stress. Together, our findings uncover that proper alternative splicing of pre-mRNAs governed by the spliceosome component SmEb is essential for plant salt stress responses. Salt stress caused by soil salination inhibits plant growth and development that result in reduction of crop yield and threaten the food security. Several spliceosome components are considered to modify salt stress responses in plants. However, the molecular basis of spliceosome proteins adjustment to salt stress is still unclear. Here we report that an Sm core protein SmEb is required for salt tolerance in Arabidopsis. In addition, SmEb controls alternative splicing of hundreds of pre-mRNA to participate in plant response to salt stress. Our results further reveal that SmEb takes effect on maintain proper ratio of two RCD1 splicing variants to adjust to H2O2 accumulation under salt stress. Together, our findings uncover that proper alternative splicing of pre-mRNAs governed by the spliceosome component SmEb is essential for plant salt stress responses.
Project description:Soil salinity is a major production constrain for agricultural crops, especially in Oryza sativa (rice). Analyzing physiological effect and molecular mechanism under salt stress is key for developing stress-tolerant plants. Roots system has a major role in coping with the osmotic change impacted by salinity and few salt-stress-related transcriptome studies in rice have been previously reported. However, transcriptome data sets using rice roots grown in soil condition are more relevant for further applications, but have not yet been available. The present work analyzed rice root and shoot physiological characteristics in response to salt stress using 250 mM NaCl for different timepoints. Subsequently, we identified that 5 day treatment is critical timepoint for stress response in the specific experimental design. We then generated RNA-Seq-based transcriptome data set with rice roots treated with 250 mM NaCl for 5 days along with untreated controls in soil condition using rice japonica cultivar Chilbo. We identified 447 upregulated genes under salt stress with more than fourfold changes (p value < 0.05, FDR < 0.05) and used qRT-PCR for six genes to confirm their salt-dependent induction patterns. GO-enrichment analysis indicated that carbohydrate and amino-acid metabolic process are significantly affected by the salt stress. MapMan overview analysis indicated that secondary metabolite-related genes are induced under salt stress. Metabolites profiling analysis confirmed that phenolics and flavonoids accumulate in root under salt stress. We further constructed a functional network consisting of regulatory genes based on predicted protein–protein interactions, suggesting useful regulatory molecular network for future applications.
Project description:Growth in soil inoculated with plant growth promoting bacteria (PGPB) producing 1-aminocyclopropane-1-carboxylate |(ACC) deaminase or expressing of the corresponding acdS in transgenic lines reduces the decline in shoot length, shoot weight and photosynthetic capacity triggered by salt stress in Camelina sativa. Reducing the levels of stress ethylene decreases the expression of salt stress-responsive genes, specifically genes involved in development, senescence, chlorosis and leaf abscission that are highly induced by salt to the levels that may have a less negative effect on growth and productivity. Moderate expression of acdS under the promoter of the rolD promoter or growing plants in soil treated with the PGPB Pseudomonas migulae 8R6, were more effective in eliminating the expression of the genes involved in ethylene production and/or signaling than expression under the more active Cauliflower Mosaic Virus 35S promoter.